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Online Version
DOI: 10.1466/20141125.01



12th International Probabilistic Workshop

Preface

The proceedings at hand are the result from the 12th International Probabilistic Workshop
held at the Bauhaus-University Weimar, 2014. It comprises a collection of more that 40
articles devoted to future oriented fields of stochastic theory, statistics and optimization
both in applied sciences and theory. The total content is therefore a very valuable screen
of the current state of art in the field and provides by the sketched outlooks a hint on the
necessary activities in the next decade.

Among the covered topics and techniques applied are: Risk analysis, robust topology
optimization, the quantification of uncertainties, sensitivity analysis, reliability methods,
model quality assessment, design of experiments and surrogate modeling. The applications
comprise fields of structural analysis, material science, geosciences, natural hazard and
electrical engineering. Even though the list of covered topics is large, the common interest
is in the term randomness.

The authors are both, well experienced specialists and young researchers, from more
than 12 countries worldwide who share their deep interest in modern probability theory
and stochastic simulation techniques. By the conducted scientific analysis, numerical
simulations and discussion of results, the outcome of the conference might be regarded as
a, however, small piece in our common attitude as Faustus said, to "see what holds the
earth together in its innermost elements" (Goethe, Faust).

The workshop took place on the 04th and 05th November 2014 at Bauhaus-University
Weimar, Germany and was organized jointly by Bauhaus-University Weimar (Germany),
Deltares (The Netherlands), University of Natural Resources and Applied Life Sciences
(Austria) and Dynardo GmbH (Germany). The proceedings are published in a series
issued by the Research Training Group “Evaluation of Coupled Numerical and Experi-
mental Partial Models in Civil Engineering” which is funded since 2008 by the German
Research Foundation.

The organizers of the workshop want to use the chance to thank for their support: Anne-
Marie Nöthlich, Dr. Lars Abrahamczyk and in particular Frank Zigan and Klaus Kraemer
for all their efforts in establishing a unified layout of the proceeding contributions.

The organizers of the workshop want additionally like to thank to all contributors to the
conference and are looking forward to the next meeting in this series 2015.

The local scientific committee 2014

Prof. Dr.-Ing. habil. F. Werner, Germany
Dr.-Ing. M. Huber, The Netherlands
Prof. Dr.rer.nat. T. Lahmer, Germany
Dr.-Ing. habil. T. Most, Germany
Dr.-Ing. habil. D. Proske, Austria
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Extended abstract

Topology optimization [2] is a powerful tool which has been used in various �elds of appli-
cation including civil engineering. The design obtained by classical topology optimization
usually forms a very e�cient solution for the speci�c problem at hand. In practice, how-
ever, its performance might be strongly reduced by uncertainties inevitably present in the
system. This paper focuses on robust topology optimization while taking into account
geometric imperfections. The methodology is illustrated in the design of a shallow arch.
The design domain and boundary conditions for the problem are shown in �gure 1. The
design domain, which spans an angle α = 30◦ with an inner radius Rin = 100 m, outer
radius Rout = 104 m and out-of-plane thickness t = 1 cm, is discretized by 800× 60 �nite
elements. The structure is parameterized by assigning a physical material density ρ̄e to

Ω

P

α/2α/2

RinRout

Figure 1: Topology optimization of shallow arch: design domain and boundary conditions.

every element in the design domain [2]. The volume densities indicate whether material
is present (ρ̄e = 1) or absent (ρ̄e = 0). The aim of this problem is to �nd the material
distribution that minimizes the end-compliance of the structure, limiting the volume frac-
tion of the design to Vmax = 30 %. Note that in a nonlinear setting, this is not equivalent
to minimizing the external work done by the force as in the linear case [3].

By considering the volume densities as continuous optimization variables, e�cient
gradient-based optimization algorithms can be used to solve the topology optimization
problem. Intermediate densities (0 < ρ̄e < 1) lack a physical interpretation and are pe-
nalized using the Solid Isotropic Material with Penalization (SIMP) method [2] in this
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study. Projection �lters [4] are used to avoid mesh dependence of the solution and restrict
the complexity of the optimized design. The vector of physical densities ρ̄ is therefore
de�ned as a function of a new set of design variables ρ ∈ Rne in two steps: (1) a density
�lter and (2) Heavyside projection.

Geometric imperfections in the design are modeled as a zero-mean Gaussian random �eld
p(x, θ) : Ω×Θ→ Rn which is added to the coordinates x of the nominal design:

x̃(x, θ) = x + p(x, θ) (1)

where x̃(x, θ) are the uncertain material coordinates of the imperfect design. In the shal-
low arch problem, the horizontal and vertical components of imperfections are initially
described by stationary random �elds pi(x, θ) with squared exponential covariance func-
tion with σpi = 0.33 m and lcx = lcy = 17.45 m. Furthermore, it is assumed that the
structure is placed correctly on the supports, i.e., the geometric imperfections are zero at
the location of the supports. Conditional random �elds are applied to incorporate these
constraints [1]. The variance of the conditioned random �eld is shown in �gure 2 which
illustrates that the imperfections are small close to the supports and increase towards the
center of the design domain.

Figure 2: Normalized variation Cpi/σ
2
pi
of conditional random �eld of imperfections

The uncertainties in the minimum end-compliance of the structure due to the geometric
imperfections are taken into account by de�ning the objective function as a weighted sum
of the mean mf and the standard deviation σf of the performance f(ρ) = PTu(ρ):

min
ρ

fR(ρ) = mf (ρ) + ωσf (ρ)

s.t. V (ρ)− Vmax ≤ 0 (2)

0 ≤ ρ ≤ 1

where the weighting parameter ω is chosen equal to 1. The displacements u(ρ) are
computed by �nite element analysis accounting for geometric nonlinear e�ects by means
of a Total Lagrangian formulation for large displacements. The optimization is performed
numerically by means of the method of moving asymptotes [6]. In each iteration of the
optimization algorithm, the stochastic moments mf and σf (and their sensitivities) have
to be estimated. In order to avoid multiple calls to the nonlinear �nite element solver
per design iteration, a second-order perturbation method [5] is adopted. The design
obtained by solving the robust optimization using the perturbation method is shown in
�gure 3. The performance of the imperfect designs is assessed by an elaborate Monte Carlo
simulation with 10 000 samples. The results of the robust design and the nominal design,
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Figure 3: Robust design for the shallow arch.

Design fnl m̂f σ̂f mfnl σfnl fRnl

Nominal 97.1 / / 337.3 1033.3 1370.6
Robust 121.1 126.3 12.1 126.6 13.1 139.7

Table 1: Results for the optimized shallow arch designs including the nominal nonlinear
performance fnl, the estimated statistics at the end of the robust optimization
m̂f and σ̂f and the mean mfnl and standard deviation σfnl of the nonlinear end-
compliance. All results are in kJ.

which has been obtained disregarding imperfections and adopting a linear �nite element
analysis, are compared in table 1. It can be seen that the nominal design is very sensitive
to imperfections as indicated by the large mean mfnl and standard deviation σfnl of the
nonlinear end-compliance. Although the nominal performance fnl of the robust design is
slightly worse than for the nominal design, the robust design is less sensitive to geometric
imperfections as the statistics mfnl and σfnl are much better. It should furthermore be
noted that the second-order perturbation method proves to be very accurate in the present
robust optimization as indicated by the small di�erence between the estimates m̂f and
σ̂f and the statistics mfnl and σfnl in table 1.
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Abstract. Metamodelling is an important tool for modern applications in structural
reliability, especially in the presence of high fidelity computational models. A review of
several state-of-the-art metamodel-based applications in structural reliability is given.

1 Introduction

Structural reliability analysis aims at assessing the safety of a system in the presence of
uncertainty in its components. Given a random vector that represents the input uncer-
tainty X (e.g. a joint probability density function PDF fX), the safety level is defined
through a probability of failure Pf . By defining a performance function g(X) that is
negative in case of system failure, Pf can be defined as follows (e.g. [3]):

Pf = P ({g(X) ≤ 0}) =

∫

Df={x∈RM :g(X)≤0}
fX(x)dx (1)

where Df is the failure domain defined by g(x) ≤ 0. Introducing the failure indicator
function 1Df

as the characteristic function of g(x) ≤ 0, Pf can be recast as:

Pf =

∫

RM

1Df
(x) fX(x) dx ≡ E

[
1Df

(X)
]

(2)

with associated Monte-Carlo (MC) estimator:

P̂f =
1

N

N∑

k=1

1Df

(
X(k)

)
=
Nf

N
. (3)

Due to the slow convergence rate of MC methods, the accurate computation of the ex-
pectation value estimator in Eq. (3) can rapidly become prohibitive with high fidelity
computational models commonly used today in industrial applications. More efficient
strategies for the computation of probability of failures are then needed.

A number of improvements on Monte-Carlo based simulation have been proposed in the
literature to effectively precondition the estimation in Eq. (3) and reduce the associated
computational costs (e.g. Importance Sampling, Subset Simulation, etc.), but their overall
cost (typically N = 103−4) may remain prohibitive.

Recent developments in surrogate modelling, however, have proven that metamodels can
be ideal candidates for the accurate estimation of Pf while keeping computational costs
manageable.
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2 Surrogate models

Surrogate models are functional approximations to the full complex computational models
that can be built from a comparatively small set of full model evaluations (the experi-
mental design), typically comprising tens to hundreds of samples. Such approximations
are much cheaper to evaluate than their full counterpart and in some cases they can even
provide additional useful information. Several metamodelling techniques have been suc-
cessfully applied for the solution of structural reliability problems (e.g. Polynomial Chaos
Expansions (PCE) and Kriging, see [6]). This contribution will focus on Kriging.

2.1 Kriging

Kriging, or Gaussian process metamodelling, is based on the representation of the random
output Y =M(X) as the superimposition of a deterministic trend and a realization of a
zero-mean stationary Gaussian process (see, e.g. [4]):

Y (x, ω) = f (x)T a+ Z (x, ω) (4)

where f (x)T a represents the deterministic trend and Z (x, ω) represents the Gaussian
process with variance σ2 and covariance function:

CY Y (x, x′) = σ2R (x− x′ , θ) (5)

The autocorrelation function family R is a parameter of the metamodel. The hyperpa-
rameters θ of the Gaussian process can be calculated from a learning set of full model
evaluations by maximum likelihood estimation.

Two properties of Kriging are especially useful in the context of structural reliability: it
is an interpolant and it provides a built-in estimation of the local epistemic error of the
surrogate model, known as the Kriging variance σ2

Ŷ
(x).

3 Surrogate models in structural reliability

3.1 As surrogates of g(x)

The most straightforward application of surrogate models in structural reliability is that
of providing an inexpensive surrogate of the performance function, hence offsetting the
costs of a direct application of the MC estimator in Eq. (3). However, the accuracy of
the metamodel, especially in low probability regions of the model space, can be difficult
to assess.

3.2 Adaptive experimental design

Leveraging on the local error estimate σ2
Ŷ

(x) provided by the Kriging metamodel, it is
possible to devise experimental design enrichment strategies aimed at minimizing the

8
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Figure 1: Example of experimental design enrichment based on the learning function in
Eq. (6) at three different iterations for the Four Branch Function from [5]. The
black line represents the true limit state surface, while the blue and red lines
represents the 95% quantiles of the currently estimated failure regions.

metamodelling error near the limit state surface. This allows one to initialize the meta-
model with a small experimental design, followed by its iterative refinement in the regions
of interest. This can be achieved by defining enrichment criteria that identify the re-
gions where the maximum improvement in the classification power of the metamodel are
expected. One example is the learning function from [2]:

U(x) =
|µŶ (x) |
σŶ (x)

(6)

This indicator can be interpreted as the reliability index of the classification of each meta-
modelled sample as being in the safe or failure domain. Lower values of U(x) indicate
high misclassification probability and closeness of x to the limit state surface. Thus they
are ideal candidates for the addition of experimental design points. An example applica-
tion of adaptive refinement of the failure domain can be found in Figure 1 for a test-case
(Four Branch benchmark, see e.g. [5]).

3.3 Metamodel-based importance sampling

Further improvements can be attained with a metamodel-based extension of the Impor-
tance Sampling (IS) Monte-Carlo simulation method. Importance Sampling consists in
defining an instrumental probability density function h(X) which allows one to recast Eq.
(1) as:

Pf =

∫

RM

1Df
(x)

fX(x)

h(x)
h(x) dx = Eh

[
1Df

(X)
fX(X)

h(X)

]
(7)

The choice of h(X) significantly affects the accuracy of the Monte-Carlo estimation of
Pf . An approximation to the optimal instrumental PDF can be built from the Kriging
metamodel (see, e.g. , [1]), with which Eq. (7) can be rewritten as:

Pf = Pfε · Eh̃
[
1Df

(x)

π(x)

]
= Pfε · αcorr (8)

9



12th International Probabilistic Workshop

where Pfε is the probability of failure calculated with the inexpensive Kriging surrogate,
while αcorr is a correction factor calculated from an additional validation set of full model
evaluations sampled from the approximated optimal instrumental PDF h̃(x). Based on
the Kriging predictor µŶ and variance σ2

Ŷ
, the terms in Eq. (8) read:

π(x) = Φ
(
−µŶ (x)/σŶ (x)

)
, h̃(x) =

π(x)fX(x)

Pfε
, Pfε = E [π(x)] . (9)

Several application examples of this method show that it can significantly help improving
the stability and efficiency existing approaches based on metamodelling or adaptive design
alone ([1, 6]).

4 Conclusions

Metamodelling has become an established tool in structural reliability applications in
the presence of expensive computational models. The research community is actively
developing new and more sophisticated approaches than the straightforward surrogation of
the limit state function, e.g. by exploiting the stochastic properties of Kriging surrogates
to create quasi-optimal instrumental densities in Importance Sampling algorithms.
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Distributed-parameter systems (DPSs) are dynamical systems whose state depends not
only on time but also on spatial coordinates. They are frequently encountered in prac-
tical engineering problems. Their appropriate mathematical modelling most often yields
partial differential equations (PDEs), but descriptions by integral equations or integro-
differential equations can sometimes be considered. Clearly, such models involve using
very sophisticated mathematical methods, but in recompense for this effort we are in a
position to describe the process more accurately and to implement more effective control
strategies. Early lumping, which means approximation of a PDE by ordinary differen-
tial equations of possibly high order, may completely mask the distributed nature of the
system and therefore is not always satisfactory.

One of the basic and most important questions in DPSs is parameter estimation, which
refers to the determination from observed data of unknown parameters in the system
model such that the predicted response of the model is close, in some well-defined sense,
to the process observations. The parameter-estimation problem is also referred to as pa-
rameter identification or simply the inverse problem. In order to identify the unknown
parameters (in other words, to calibrate the considered model), the system’s behaviour or
response is observed with the aid of some suitable collection of sensors termed the mea-
surement or observation system. In many industrial processes the nature of state variables
does not allow much flexibility as to which they can be measured. For variables which
can be measured online, it is usually possible to make the measurements continuously in
time. However, it is generally impossible to measure process states over the entire spatial
domain.

The inability to take distributed measurements of process states leads to the question of
where to locate sensors so that the information content of the resulting signals with respect
to the distributed state and PDE model be as high as possible. This is an appealing
problem since in most applications these locations are not prespecified and therefore
provide design parameters. The location of sensors is not necessarily dictated by physical
considerations or by intuition and, therefore, some systematic approaches should still be
developed in order to reduce the cost of instrumentation and to increase the efficiency of
identifiers.

Motivations to study the sensor-location problem stem from practical engineering issues.
Optimization of air quality-monitoring networks is among the most interesting. One of
the tasks of environmental protection systems is to provide expected levels of pollutant
concentrations. But to produce such a forecast, a smog-prediction model is necessary,
which is usually chosen in the form of an advection-diffusion PDE. Its calibration re-
quires parameter estimation (e.g., the unknown spatially varying turbulent diffusivity

11



12th International Probabilistic Workshop

tensor should be identified based on the measurements from monitoring stations). Since
measurement transducers are usually rather costly and their number is limited, we are
inevitably faced with the problem of how to optimize their locations in order to obtain
the most precise model.

In general, the following main strategies of taking measurements can be distunguished:

• Locating a given number of stationary sensors

• Using moving sensors

• Scanning, i.e., only a part of a given total number of stationary sensors take mea-
surements at a given moment in time

Trying to implement the above-mentioned techniques, we are faced with the corresponding
problems:

• How to determine an optimal sensor placement in a given admissible spatial domain?

• How to design optimal sensor trajectories?

• How to select the best subset of all available sensors to take measurements at a
given time?

Additionally, in all cases we should also address the question of a minimal number of
sensors which will guarantee sufficient accuracy of the estimates.

Instead of the wasteful and tedious exhaustive search of the solution space, which consti-
tutes quite a naive approach, approaches originating in statistical optimum experimental
design and its extensions to models for dynamic systems, especially in the context of
the optimal choice of sampling instants and input signals turn out extremely useful. In
this vein, various computational schemes have been developed to attack directly the orig-
inal problem or its convenient approximation. The adopted optimization criteria are
essentially the same, i.e., various scalar measures of performance based on the Fisher in-
formation matrix (FIM) associated with the parameters to be identified are maximized.
The underlying idea is to express the goodness of parameter estimates in terms of the
covariance matrix of the estimates. For sensor-location purposes, one assumes that an
unbiased and efficient (or minimum-variance) estimator is employed. This leads to a great
simplification since the Cramér-Rao lower bound for the aforementioned covariance ma-
trix is merely the inverse of the FIM, which can be computed with relative ease, even
though the exact covariance matrix of a particular estimator is very difficult to obtain.

Over the past two decades, this methodology has been substantially refined to extend its
applicability. A comprehensive treatment of both theoretical and algorithmic aspects of
the resulting sensor location strategies is contained in the monograph [1].

One of the main difficulties associated with optimization of sensor locations is the de-
pendence of optimal solutions on the values of the parameters to be estimated. Since
these values are unknown, an obvious and common approach is to use the so-called lo-
cally optimal designs in which some prior estimate is assumed in lieu of the unknown true
value (this estimate can be, e.g., a nominal value or a result of a preliminary experiment).
But this guess may be far from the true value and, simultaneously, properties of locally
optimal designs can be very sensitive to changes in the prior guess.

Since a good choice of design depends on true parameter values, a very natural idea is
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to alternate experimentation and estimation steps. Accordingly, the total time horizon
is divided into several contiguous parts and each of them is related to the correspond-
ing stage of the experiment. At each stage, in turn, a locally optimal sensor location is
determined based on the available parameter estimates (nominal parameter values can
be assumed as initial guesses for the first stage), measurements are taken at the newly
calculated sensor positions, and the data obtained are then analysed and used to update
the parameter estimates. Owing to its simplicity, sequential design is commonly consid-
ered as a universal panacea for the shortcomings of local designs. Let us note, however,
that the following important questions are to be faced and the answers to them are by no
means straightforward:

1. How many subintervals should be chosen?

2. How do the initial estimates of parameters influence the design?

3. What are the asymptotic properties of sequential procedures, i.e., does the generated
design ‘tend’ in any sense to a design which would be optimal in terms of the true
value?

What is more, this technique it is often impractical because the required experimental
time may be too long and the experimental cost may be too high. Therefore, the talk is
focused on alternative robust approaches.

If it is known that the range of possible values of the unknown parameter θ reduces to a
given compact set Θad, then a more cautious approach to the control of the properties of
the sensor location over Θad consists in a probabilistic description of the prior uncertainty
in θ, characterized by a prior distribution ς which may have been inferred, e.g., from
previous observations collected on similar processes. The criterion to be minimized is then
the expectation of the corresponding local optimality criterion over Θad. Unfortunately, its
direct use necessitates evaluation of multidimensional integrals, which is extremely time
consuming. Luckily, the situation is by no means hopeless, as this framework is typical for
the application of stochastic-approximation techniques. Based on the validity of the law of
large numbers, a stochastic optimization problem is approximated in such a way that the
uncertain random quantities in the original problem are replaced by artificially generated
random variables. If these random variables are produced in advance to construct an
approximate empirical problem, then we deal with the so-called nonrecursive methods
being part of the broad family of Monte Carlo methods. From a practical point of view,
recursive methods are sometimes more interesting. In these methods random samples are
drawn only at the moment when they are requested. The total number of such random
draws does not have to be determined at the beginning, but it can be adaptively chosen
during the progress of estimation.

The above experiment, which is good on the average, may prove very poor for some
particular values of the parameters associated with very low probability densities. If we do
not accept such a situation, then a way out is to optimize the worst possible performance
of the experiment over the prior admissible domain for the parameters Θad, which leads
to a minimax problem. In other words, we provide maximum information to a parameter
vector θ which is the most difficult to identify in Θad. The initial minimax optimization
problem can then be solved with the use of some algorithms for inequality-constrained,
semi-infinite optimization.
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Each choice between the above two robust approaches has some advantages and some
disadvantages. A final selection has to be made on the basis of secondary considerations.
For example, if we are anxious to optimize the worst possible performances of the exper-
iment designed, then optimal designs in the minimax sense are preferred. On the other
hand, if the prior uncertainty on the parameters to be identified is characterized by some
prior distribution, then the average experimental design is particularly suited for making
the designs independent of the parameters.

References

[1] Uciński D (2005) Optimal Measurement Methods for Distributed-Parameter System
Identification. CRC Press, Boca Raton

14



12th International Probabilistic Workshop

Contributions of the Participants of the

12th International Probabilistic Workshop,
Weimar 2014

15





12th International Probabilistic Workshop

Assessment of the Flutter Stability of Bridges using a
Probabilistic Approach

Tajammal Abbas, Guido Morgenthal

Research Training Group 1462
Faculty of Civil Engineering,
Bauhaus University Weimar,

Berkaer Strasse 9, 99425 Weimar, Germany
tajammal.abbas@uni-weimar.de

Abstract. The phenomenon of aerodynamic instability caused by wind is usually a major
design criterion for the long-span cable supported bridges. If the wind speed exceeds
the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The
prediction of the flutter boundary therefore requires accurate and robust models. The
state-of-the-art theory concerning determination of flutter stability limit is presented.
A probabilistic flutter analysis is used to evaluate the effect of parameter uncertainty.
A bridge section is numerically modelled in the CFD simulations. A methodology for
carrying out sensitivity analysis of the flutter phenomenon is developed. The sensitivity
with respect to uncertainty of flutter derivatives and structural parameters is assessed by
considering the probability distribution of the flutter limit. A significant influence on the
flutter limit is found by including uncertainties of the flutter derivatives due to different
interpretation of scatter in the CFD simulations. The results indicate that the proposed
probabilistic flutter analysis provides extended information concerning the accuracy in the
prediction of flutter limits. The final aim is to setup a method to estimate the flutter limit
without performing wind-tunnel tests. Such a tool could be useful for bridge engineers at
pre-design stages. The study also shows the difficulties in this regard which have to be
overcome but also highlights some interesting and promising results.

1 Introduction

The interaction of the aerodynamic forces and the structural motion can lead to instability
when the energy input from the wind flow exceeds that dissipated by the structural
damping. The coupling of torsional and bending mode occurs and amplitude of the
motion progressively increases at this stage which is known as classical flutter. The
negative aerodynamic damping is produced such that the deformations reach to a level
that failure happens. The main objective of studying flutter phenomena is to find the
instability limit which is also known as flutter limit and making sure that this wind speed
is not exceeded, with a certain probability, during the design life of the bridge.

Theodorsen [1], developed a theory to build the self-excited forces for airfoils based on
potential flow past a flat plate by using circulation functions. Scanlan and Tomko [2]
gave a popular linearised form to represent the self-excited forces by using aerodynamic
derivatives. Free vibration [3] or forced vibration [4] approaches are used to extract the
aerodynamic derivatives. Walther and Larsen used Computational Fluid Dynamics (CFD)
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to compute flutter derivatives numerically [4]. The analytical solutions for the two degree
of freedom aeroelastic instability include eigenvalue analysis [5].

Mannini and Bartoli [6] presents a flutter instability in a probabilistic way and and the
effect of correlation between flutter derivatives in the definition of the probability dis-
tribution of the flutter wind speed. Cheng and Xiao [7] used response surface method
for the probabilistic free vibration and flutter analyses of suspension bridges. Jurado
and Hernández [8] presented an analytical sensitivity analysis of flutter phenomenon in
long-span bridges.

In this paper, the study is made on the aeroelastic phenomena of flutter and flutter
analysis is performed for bridges by using the deterministic and probabilistic approaches.
Finally application of these approaches is presented on the bridges to calculate ultimately
their critical flutter limit. The main objective of this study is to create a framework
for probabilistic flutter analysis. To achieve this, the approach demonstrates to take
parameter uncertainty into account according to the importance of each parameter by
performing sensitivity analysis.

2 Flutter Phenomenon

Flutter is a coupling of aerodynamic forcing with a structural dynamics problem. The
flutter analysis is performed by complex eigenvalue solution. Models for aerodynamic
forces employed are the analytical Theodorsen expressions for the motion-induced aero-
dynamic forces of a flat plate and Scanlan derivatives of a bridge section as a Meta model.
CFD simulations using the Vortex Particle Method (VPM) are used to compute aerody-
namic derivatives. The structural representation is dimensionally reduced to a two degree
of freedom section model calibrated from global model.

A simplified two degree of freedom representation of the bridge deck may be considered
as shown in Figure 1 where U∞ is the wind speed and B is the width of the section. The
equations of motion can be written as

mḧ+ 2mξhωhḣ+mω2
hh = FL (1)

Iα̈ + 2Iξαωαα̇ + Iω2
αα = FM (2)

where m and I are the mass and mass moment of inertia, ξh and ξα are the damping
ratios, ωh and ωα are the natural circular frequencies for the heave and pitch mode, h and
α are the vertical displacement and rotation, FL and FM are the lift force and moment
respectively.

Scanlan [2] expressed the motion-induced aerodynamic forces on a cross section as a meta
model which assumes that the self-excited lift FL and moment FM for a bluff body may be
treated as linear in displacement h and rotation α and their first derivatives in a linearised
form:

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+KH∗2

Bα̇

U∞
+K2H∗3α +K2H∗4

h

B

]
(3)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B

]
(4)
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Figure 1: Definition of degrees of freedom (heave h and pitch α) for flutter analysis:
(- -) undeformed, (−−−) deformed.

where ρ is the air density, H∗i and A∗i (i=1,..,4) are non-dimensional function of K(= Bω
U∞

)
known as aerodynamic or flutter derivatives which are associated with self-excited lift
and moment, respectively, K is the reduced frequency and ω is the frequency of the
bridge oscillation under aerodynamic forcing. These aerodynamic derivatives are usually
measured in special wind tunnel tests but can also be computed from CFD simulations.

Fully Analytical (Model #1) Fully analytical models are simple, easy to implement
and allow a better insight into the force coupling. Theodorsen investigated the flutter
phenomenon for aircraft wings and gave a very popular analytical approach for the flutter
analysis [1]. It considers a flat plate subjected to the action of a smooth oncoming flow
with two degrees of freedom only (see Figure 1). The main idea is to represent instability
as an eigenvalue problem. The formulation of the system of differential equations to the
eigenvalue problem is given in [9].

Derivative-based Eigenvalue Analysis (Model #2) Motion-induced forces can also
be determined from numerical forced vibration simulations. The resulting lift force and
moment time histories are then used to compute the aerodynamic derivatives. A flow
solver based on the VPM has been used here to perform forced vibration simulations on
the sections. Aerodynamic derivatives then can be computed in a least square sense from
the resulting force and moment time histories.

The results of simulations performed on the bridge sections are shown in Figure 3. Ana-
lytical values are also plotted for comparison. The quality of the results varies along the
vr range depending on different factors. Eigenvalue solution is then performed to compute
the flutter limit.

3 Reference Objects

The Lillebælt (LB) suspension bridge, Denmark and Tacoma Narrows (TN) suspension
bridge, USA have been used as reference objects in this study. These two cross sections
(see Figure 2) have been considered to cover a wide range of structural parameters as
shown in Table 1.
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Figure 2: Simplified LB and TN suspension bridge deck sections (dimensions: [m]).

Table 1: Basic data and structural properties of the bridge sections.
Section Span

[m]
B
[m]

m
[kg/m]

I
[kgm2/m]

fh
[Hz]

fα
[Hz]

ξh, ξα
[-]

LB 600 33 11667 1017778 0.156 0.500 0.01
TN 854 12 4250 177730 0.130 0.200 0.01

v

A

v

B
C

D

−15

−10

−5

0

−5

0

5

10

15

20

−40

−30

−20

−10

0

10

−10

−5

0

5

0

1

2

3

−4

−2

0

2

4

0 4 8 12 16
0

2

4

6

8

0 4 8 12 16
−2

−1

0

1

Figure 3: Aerodynamic derivatives (H∗i and A∗i where i =1, 2, 3, 4) w.r.t. vr;
(—) flat plate by Theodorsen theory, forced vibration analysis on
(−−−•−−−) LB section and (--◦--) TN section.

20



12th International Probabilistic Workshop

4 Probabilistic Flutter Analysis

Flutter analysis is commonly performed through deterministic approach by using the
mean values of the input parameters and the aerodynamic derivatives. However, the final
flutter limit is significantly influenced by a small change in one or few input parameters.
Therefore, it is important to consider such variation in the input parameters and perform
the flutter analysis using a probabilistic approach.

It is not desirable to perform variance based sensitivity or uncertainty analysis in case
of complex simulation as it will become expensive. The response surface may be used
in this case to make the process more efficient. Polynomial regression can be used to
approximate the modal response by polynomial basis function. These parametric models
relate the input parameters to the global model response. Figure 4 shows the process of
using response surface method for flutter prediction and utilizing it for further analyses.
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Figure 4: Response surface method for sensitivity and uncertainty analyses.

Table 2: Flutter stability analysis using actual model and the response surface method.
Actual model Response surface

Model Section Ucr
[m/s]

ωcr
[rad/s]

vrcr
[-]

Ucr
[m/s]

ωcr
[rad/s]

vrcr
[-]

Model#1 LB 93.8 2.08 8.62 93.8 2.07 8.63
Model#1 TN 13.5 1.08 6.56 13.3 1.11 6.48
Model#2 LB 94.2 2.21 8.15 98.5 2.16 8.68
Model#2 TN 11.1 1.23 4.88 11.8 1.23 5.10

Linear regression model was used with quartic terms as response surface for the mod-
els. Latin Hypercube Sampling (LHS) has been used here which requires less number of
samples to obtain reasonable convergence. The actual model took 10,200 seconds whereas
response surface approach took only 1 second to solve 10,000 samples. There is significant
improvement in the computational time. The Coefficient of Determination (CoD) shows
the quality of approximation of a polynomial regression model. The computed CoD was
0.998 which is close to 1 that means the simplified mathematical model describes very
well the behaviour of the complex model. Table 2 shows a good agreement between the
flutter limits computed from response surface method and those from the actual model.
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5 Sensitivity Analysis

A sensitivity analysis determines the change in model output values that results from the
changes in model input values. Variance based methods are very suitable to quantify this
contribution. The total effect sensitivity indices is defined as

STi =
E(V (Y |X∼Xi

))

V (Y )
(5)

where V (Y ) is the unconditional variance of the model output and V (Y |X∼Xi
) is the

variance of Y caused by all model inputs without Xi.

The structural parameters used for the sensitivity analysis are shown in Table 1. The
variations in the parameters were assumed independent of each other. Sensitivity analysis
of the structural input parameters (Figure 5, left) shows that the torsional frequency is
the most important input parameter which affects the flutter limit. Then the width of the
section and the mass moment of inertia also have significant effect. Mass of the section
and the bending frequency have less influence whereas the damping ratio has the least
effect as compared to the other input parameters.

Similarly, the variation in the aerodynamic derivatives was considered and sampling was
done for eight aerodynamic derivatives. Figure 5 (right) shows that H∗3 , A∗1, A∗2, A∗3 and
upto some extent H∗1 are the most significant. H∗4 seems to have almost no effect which
verifies the outcome of other studies [10]. However, A∗4 has still some visible effect. H∗4 and
A∗4 represents the aerodynamic stiffness induced by the vertical displacement of the deck,
and are considered to have small influence on the flutter limit. However, the results of this
study shows that H∗4 and A∗4 can have high coefficient of variation, and thus significantly
contributions to the overall uncertainty in the prediction of flutter limit.It is important
to mention here that the sensitivity analysis depends on a number of factors such as the
cross section shape and the structural input parameters. Changing these parameters will
result in a different outcome.
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Figure 5: Global sensitivity analysis for flutter limit considering probabilistic
(left) input parameters, (right) aerodynamic derivatives;
(4) Model#1 LB section, (5) Model#1 TN section,
(◦) Model#2 LB section, (�) Model#2 TN section.
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6 Uncertainty Analysis

The main objective of uncertainty analysis is to quantify the uncertainty in the output
as a result of uncertainty in the input parameters. It also includes the identification of
characteristics of various probability distributions of model input and output. The un-
certainty in parameters is assumed to be represented by a normal distribution and it is
further assumed that the uncertainty of structural input parameters and aerodynamic
derivatives are independent. All other input parameters are assumed deterministic. A
probabilistic approach of modelling the aerodynamic derivatives is suggested. The condi-
tion of linearly increasing standard deviation of derivatives along vr is also to be satisfied.
The correlation considered between the aerodynamic derivatives generally reduces the
scatter of the model output in turn reduces the model uncertainty. Therefore, ignoring
correlation will lead to conservative solution. This is also desirable because the actual
correlation between the parameters is not well established.

(a) Synthetic or artificial correlation introduced between all aerodynamic derivatives as

(i) no correlation (ρ(xi, xj)=0.0)

(ii) full correlation (ρ(xi, xj)=1.0)

(iii) partial correlation (ρ(xi, xj)=0.5)

(b) Correlation for lift force aerodynamic derivatives H∗1 −H∗4 and H∗2 −H∗3
Correlation for moment aerodynamic derivatives A∗1 − A∗4 and A∗2 − A∗3

(c) Dependence of derivatives on each other

(i) from flat plate approximation as H∗1 = −K.H∗3 and A∗1 = −K.A∗3 [11, 12]

(ii) also interesting is correlation between H∗1 −H∗2 , H∗3 −H∗4 , A∗1−A∗2 and A∗3−A∗4
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Figure 6: Uncertainty analysis (left) uncorrelated input parameters and aerodynamic
derivatives (right) correlated aerodynamic derivatives (LB section, Model#1);
(4) input parameters, (5) aerodynamic derivatives,
(◦) input parameters and aerodynamic derivatives.

Figure 6 summarises the results for uncertainty analysis. It can be seen that the uncer-
tainty in the model output is more by considering the uncertainty in the input parameters
and is less if the uncertainty only in aerodynamic derivatives is considered.
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7 Conclusions

A framework of probabilistic flutter analysis is presented. Response surface method was
suggested to be used here for complex models in order to make the probabilistic approach
more efficient. An approach is used to quantify sensitivity of the input parameters and the
aerodynamic derivatives for flutter analysis. The aerodynamic derivatives were identified
as important which have major influence on the flutter limit.

The effect of parameter uncertainty on the flutter limit was also quantified. Linearly
increasing variation of scatter with the reduced speed was assumed in the aerodynamic
derivatives to account for uncertainty. The importance of correlation between the aero-
dynamic derivatives was also highlighted by using fully correlated, uncorrelated and par-
tially correlated aerodynamic derivatives. The approach of using several conditions of
correlation was used in the absence of information about the actual correlation. Higher
correlations lead to the smaller uncertainty in the model output.

The results show that the flutter limit is sensitive to the modelled parameter uncertainty
and to some extent aerodynamic derivatives uncertainty. The mean value is not sensitive
to uncertainties due to normally distributed scatter of CFD simulation results. The
probabilistic flutter analysis is superior over deterministic method of calculating flutter
limit as it also shows the distribution of the flutter limit and the interval of likelihood of
occurrence of flutter limit. It provides more information about the nature of the flutter
limit, than a corresponding deterministic analysis. Moreover, this method can also be
used for probabilistic design or performance based design.
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Abstract. The advanced method using the material laws given in DIN EN 1992-1-2
is state of the art for the determination of fire resistance of concrete structures. The
“quality” of the resistance model is proofed by the recalculation of fire tests. But most
results published in Germany only consider older material laws, which do not exactly
match those of DIN EN 1992-1-2. German examinations of the reliability and senstivity
analysis of concrete members subjected to fire use FORM and do not consider newer
results of the model uncertainties. The calculated sensitivity indices αi are only valid at
the “performance” point.

A Monte Carlo simulation of reinforced concrete columns subjected to a standard fire is
set up. The uncertainties of the thermal calculation and the resistance model are taken
from newer examinations, where current physical properties and material laws are used.
The evaluation of the results of the limit state function with a global sensitivity analysis
reveal, that the advanced method according to DIN EN 1992-1-2 is highly sensitive to
calculated temperatures.

1 Introduction

The advanced method according to DIN EN 1992-1-2 [5] is state of the art for the check of
fire resistance and widely accepted by engineers and building authorities in Europe [6, 15].
The accuracy of this calculation scheme is proofed by recalculation of laboratory tests,
which have been carried out by Haß [7]. The sensitivity against the input parameters has
been examined by Henke [8].

But the material laws used by Haß [7] for the calibration differ from those given in DIN EN
1992-1-2 [5]. The model uncertainties of the resistance model have not been considered by
Henke [8], because the test series have not been finished. Newer recalculations by Hosser,
Richter and Wöckener [9] use the material laws given in DIN EN 1992-1-2 - but only four
columns are examined. The results of a probabilistic study using current material laws
have been published by Hosser et al. [10], where the reliability of concrete, timber and
steel members subjected to natural and standard fires is determined. Therefore only a
reduced set of stochastic parameters is taken into account, because the analysis has to be
carried out for every time step.

27



12th International Probabilistic Workshop

Achenbach and Morgenthal [1] recalculate measured temperatures of columns and ex-
perimental times to failure of concrete columns subjected to a standard fire using the
material laws from DIN EN 1992-1-2 [5]. A Monte Carlo simulation of reinforced concrete
walls subjected to a standard fire is carried out using the uncertainties of the thermal
calculation and the resistance model given by the calibration.

In this conference paper the Monte Carlo simulation is extended to square columns heated
on all sides by a standard fire.

2 Examinations from Achenbach and Morgenthal

Achenbach and Morgenthal [1] recalculate the measured temperatures of reinforced con-
crete columns subjected to a standard fire. The columns have been tested at TU Braun-
schweig. At the tests, no thermal properties of the concrete mixture have been determined.
The recalculation is carried out using the lower limit of the thermal conductivity λc and
a moisture content u = 3% of weight, as given in DIN EN 1992-1-2. The statistical key
data of the ratio of calculated to the measured temperatures ηt = Tcal/Texp is a mean
of µt = 1.05 and a standard deviation of σt = 0.19, containing all uncertainties of the
temperature distribution in the testing furnace and thermal properties.

56 laboratory tests from TU Braunschweig, Université de Liège and Universiteit Gent are
used as database for the recalculation [1] with the advanced method using the material
parameters of DIN EN 1992-1-2 [5]. The ratio of the calculated to experimental time to
failure is η = tcal/texp, with the statistical key data µ(η) = 0.92 and σ(η) = 0.47 assuming
a normal distribution. The Anderson-Darling test [16] is used to check the assumption of
a normal distribution in combination with Grubbs’ test [16] for the detection of outliers.
The level of significance for both tests is chosen to α = 0.1 and eight outliers are removed.
The statistical key data changes to µ = 0.76 with σ = 0.17.

The results from the calibration of the thermal calculation and the mechanical model are
used by Achenbach and Morgenthal [1] to consider the model uncertainties in the Monte
Carlo simulation of reinforced concrete walls. For walls, the temperature distribution
must only be solved in one dimension, which simplifies the calculation procedure and
allows the consideration of all possible stochastic variables.

Walls with an ratio of wall length to cross section height lcol/h = 40 and 25 are simulated.
The evaluation of the results by Spearman’s rank correlation coefficient [16] and the main
effect of the global sensitivity analysis according to Saltelli [17] reveal, that the uncertainty
of the temperature calculation governs all other basic variables. Especially the wall length
lcol, the area of reinforcement as, the height h of the cross section and the eccentricity e0
only have an negligible influence on the variance of the limit state function.
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3 Applied Methods

3.1 Calculated examples

Square columns, heated on four sides by a standard fire [3], are used in the full proba-
bilistic analysis. The structural system with loads is displayed in Figure 1, the range of
parameters is given in Table 1. The ultimate load Pd = 1.35Gk + 1.5Qk with given area
of reinforcement As,tot is determined with the simplified method for the design of columns
based on nominal curvature. The ratio of live load to dead load Qk/Gk is assumed to 0.7.
The fire resistance tfire according to DIN EN 1992-1-2 [5] of the examples is determined
by the tabulated data given in Table 5.2a [5], assuming that the buckling length in the
cold and hot condition are the same.
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Figure 1: Structural System and cross section of examined columns

lcol b = h a1 = a2 As,tot fck fyk Gk Qk e0/h tfire
no. [cm] [cm] [cm] [cm2] [MPa] [MPa] [kN] [kN] [-] [min]
1 300 20 4 12.57 20 500 340 240 0.0 60
2 300 20 4 12.57 20 500 250 170 0.1 60
3 300 20 4 12.57 20 500 120 80 0.5 60
4 300 30 5 19.64 20 500 710 500 0.0 90
5 300 30 5 19.64 20 500 540 380 0.1 90
6 300 30 5 19.64 20 500 260 180 0.5 90

Table 1: Parameters of simulated columns

3.2 Thermal calculation, resistance model and limit state function

A finite difference scheme with local variable thermal properties [2] is implemented for
the temperature calculation of the cross section. The heat transfer coefficient αc = 25
[W/m²K] and the emissivity ε = 0.7 [-] are taken as the recommended values [3, 4]. The
thermal conductivity λc is considered with its lower limit, a density of the concrete of
ρ = 2400 [kg/m³] and a moisture content u = 3 % of weight is taken for the thermal
properties of the concrete [5].
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The calculated temperatures at tfire are used as input for the cross section analysis ac-
cording to the advanced method given in DIN EN 1992-1-2 [5]. The moment-curvature
diagram MR(κ) is evaluated to describe the nonlinear behavior of the heated cross sec-
tion. The curvatures are assumed to have a parabolic distribution over the length of the
column. With the notation of Figures 1 and 2 the displacement in the middle of the span,
taking second order effects into account, can be calculated as

eII(κ) =

(
lcol
2

)2

·
(

4

10
κ− 1

10
κ0

)
(1)

according to Kordina and Quast[12]. The limit state function is defined as

G = max (MR(κ)−ME(κ)) . (2)

κ
0

l
col

 / 2

κ

M

κ

M
R

M
E

G

Figure 2: Left side: shape of curvature, right side: qualitative limit state function in the
M-κ-diagram

3.3 Basic variables

The probabilistic modeling of the basic variables is given in Table 2. Due to the results
from Achenbach and Morgenthal [1], the length of the column lcol, the dimensions of the
cross section b and h and the area of reinforcement As,1 and As,2 are fixed to their nominal
values.

The uncertainty of the thermal calculation is considered by the basic variableXt, using the
results of the calibration carried out by Achenbach and Morgenthal [1]. The calibration
has been carried out with the nominal values of the thermal properties. The deviations
contain the uncertainties of the thermal properties, the uncertainty of the calculation
method and the uncertainty of the temperature distribution in the test furnace. Therefore
the thermal properties of the concrete are also considered to be deterministic in the full
probabilistic analysis. The calculated temperatures are multiplied by Xt to simulate the
uncertainty of the thermal calculation method and the physical properties.

The calculated resistance of the cross section for given curvature MR(κ) is multiplied by
Xm regarding the uncertainty of the mechanical model. The parameters of the normal
distribution can be derived from the results of the calibration. With Xm = 1/η the
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parameters of the normal distribution can be transformed [16] from the results of the
calibration by µXm = 1

µ
· (1 + ν2) and vXm ≈ v = σ

µ
.

stochastic distribution
variable comment type parameters source
lcol [cm] length of column DET Table 1 -
b = h [cm] height and width DET Table 1 -
a1 [cm] distance of reinforcement N µ = a1,

σ = 0.5 cm
[11, 18]

a2 [cm] distance of reinforcement N µ = a2,
σ = 0.5 cm

[11, 18]

As,1 [cm2] area of reinforcement DET Table 1 -
As,2 [cm2] area of reinforcement DET Table 1 -
fc [MPa] compressive strength LN µ = fck + 8MPa,

σ = 5MPa
[10, 18]

fy [MPa] yield strength N µ = fyk+2σMPa,
σ = 30MPa

[10, 11]

G [kN] dead load N µ = Gk, v = 0.1 [10, 18]
Q [kN] live load G Qk : 98% fractile,

v = 0.4
[18]

e0 [cm] constant eccentricity DET Table 1 -
ef [cm] initial curvature N µ = 0,

σ = lcol/1000
[11]

Xt [-] uncertainty of calculated
temperatures

N µt = 1.0, vt = 0.2 [1]

Xm [-] uncertainty of
mechanical model

N µ = 1.4, v = 0.2 [1]

Table 2: Basic variables of examined columns (DET = deterministic, N = normal, LN =
two-parametric log-normal, G = Gumbel)

3.4 Probabilistic method

A Monte Carlo simulation with the parameters given in Table 1 and the stochastic models
for each basic variable shown in Table 2 is set up. Latin hypercube sampling [13] is applied
to generate the random numbers. Two sample sets are generated: the first set assumes
that the model uncertainties of the thermal calculation Xt and the resistance model Xm

are randomly distributed. In the second set both are fixed to 1.0. This allows to study
the influence of the model uncertainties on the failure rate.

3.5 Evaluation of the results of the limit state function

The results of the limit state function are evaluated with two methods. First, the data
is analyzed with Spearman’s rank correlation coefficient [16], which evidences the pos-
itive or negative correlation of the examined basic variable and the results of the limit
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state function. Second, a global sensitivity analysis according to Saltelli et al. [17] is
performed. For the calculation of the first-order Sobol indices, the limit state function G
is approximated by a linear response surface [14]:

Ĝ (X) = c0 +
n∑

i=1

ci ·Xi. (3)

The coefficients c are calculated by multiple linear regression [16]. The first-order Sobol
indices [17]

Si =
V (E (G|Xi))

V (G)
(4)

are determined with the response surface Ĝ (X). They are only calculated for a coefficient
of determination R2 > 0.8 for the response surface.

4 Results

The coefficient of determination R2, the failure rate pf1 with random model uncertainties
and the failure rate pf2 with fixed model uncertainties are shown in Table 3. The prob-
ability of failure is dependent on the slenderness and relative eccentricity of the applied
loads. Slender columns fail more often compared to short columns. This is in accordance
with the results from Henke [8]. Columns with a higher eccentricity are more “safe” than
centrically loaded ones, which is also in accordance with earlier published results [1, 8].

Regarding columns no. 1 and 2, fixing the uncertainties of the thermal calculation and the
resistance model leads to higher probabilities of failure, compared to stochastic modeling
of those uncertainties. This is reverted for columns no. 3 to 5: neglecting the model
uncertainties leads to “unsafe” results.

In Figure 3 the results for Spearman’s rank correlation coefficient and the main effect Si
are shown. The results for the first order Sobol index indicate, that the variance of the
limit state function is controlled byXt, which is the uncertainty of the thermal calculation.
With increasing eccentricity of applied loads, the uncertainty of the resistance model Xm

becomes more important. Further parameter uncertainties only have inferior influence on
the variance of the limit state function.

Spaerman’s rank correlation coefficient indicates clearly, that Xt and the results of the
limit state function G correlate negatively, which is in accordance with the resistance
model. An increase in temperature leads to higher deterioration of the material properties.
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Xt and Xm stochastic Xt = Xm = 1
no. R2 pf1 pf2
1: lcol/h = 15, e0/h = 0.0 0.680 0.262 0.417
2: lcol/h = 15, e0/h = 0.1 0.873 0.250 0.323
3: lcol/h = 15, e0/h = 0.5 0.927 0.061 0.001
4: lcol/h = 10, e0/h = 0.0 0.890 0.100 0.060
5: lcol/h = 10, e0/h = 0.1 0.934 0.066 0.007
6 : lcol/h = 10, e0/h = 0.5 0.923 0.024 <0.001

Table 3: Coefficient of determination R2 and probabilities of failure pf1 and pf2
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Figure 3: Spearman’s rank correlation coefficient (black) and first order Sobol indices
(white) for examined columns

5 Conclusions

The results of the examined columns confirm, that the advanced method according to
DIN EN 1992-1-2 [5] is highly sensitive to calculated temperatures. The uncertainties
of the resistance model only have a secondary effect. Neglecting the uncertainties of the
thermal calculation can lead to unsafe results.
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Abstract. Over the last years Copula functions were often used to derive multivari-
ate design events in hydrology and other fields. In most of the studies, however, the
simultaneous or even non-simultaneous occurrence of the variables to be modeled was not
considered. In the bivariate case usually two approaches are commonly applied: (i) the
maximum values of both variables were modeled despite their time of occurrence or (ii)
the maximum values of either of the variables was modeled comprising the simultane-
ously occurred value of the other variable. In this study we introduce a novel approach to
estimate bivariate design quantiles where the maxima values of the variables of interest
do not necessarily have to occur simultaneously. The methodology is based on the com-
mon Copula theory using Archimedean Copula functions to model two variables X and
Y. First, the maximum values of X are modeled considering the simultaneously occurred
values of Y. Next, the maximum values of Y are modeled considering the simultaneous
values of X. The envelop of both quantile-isolines of a given exceedance probability P
represents the design relevant design value combinations of X and Y. The methodology
is exemplarily applied to estimate design relevant water levels in the confluence reach of
the rivers Rhine and Sieg in Germany. The results show, that the new approach leads to
distinctively different results in contrast to the very conservative approach of analyzing
the annual maximum values of both variables (despite their time of occurrence relative to
each other). The introduced methodology can be applied to any data set (also for higher
dimensions than the bivariate case) where the maximum values of the variable of interest
do not always occur simultaneously. Furthermore, we show that the most relevant design
data pair should be identified taking the consequences (here the resulting water levels)
into account.

1 Introduction

Over the last years copula functions have been used to solve many different multivariate
problems, among others in a hydrological context. They were applied for example for
rainfall frequency analysis (e.g. [3]; [7]), flood frequency analysis considering peak flow
and flood volume (e.g. [15], [9] , [1]), drought frequency analysis (e.g. [8]), storm surge
modelling (e.g. [14]), and for several other multivariate problems. All above mentioned
approaches have in common that they either consider the block maxima of one (primary)
parameter together with concurrent values of the second parameter or the block maxima
of both parameters. The latter concept assumes that both values occurred simultane-
ously. However, depending on the type of variables one is interested in and their possibly
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independent physical genesis, this issue requires a more careful interpretation as already
stated by [2].

Here we introduce a methodology to estimate multivariate design values where the maxima
values of the two variables of interest do not necessarily have to occur simultaneously. To
illustrate the practical use of this approach, we estimate the design water levels in the
direct reach of a confluence of two rivers with very different catchment sizes where flood
events usually do not occur simultaneously. Due to the bivariate nature of the case study
and for simplicity, the focus is on the bivariate case, but it is noted that the methodology
can be extended to higher dimensions to include further variables.

2 Methods

2.1 General copula theory

Since copula functions have recently been extensively used (especially in hydrology) and a
corresponding number of papers have been published, we only provide a short introduction
of the theoretical background of copula functions. Much more detailed information can
be found for example in [10] and references therein.

Copulas are flexible joint distributions for modeling the dependence structure of
two or more random variables. First mentioned by [12], the joint behavior of
two (or more) random variables X and Y with continuous marginal distributions
u = FX(x) = P (X ≤ x) and v = FY (y) = P (Y ≤ y) can be described uniquely by an as-
sociated dependence function or copula-function C. In the bivariate case, the relationship
between all (u, v) ∈ [0, 1]2 can be written as

FX,Y (x, y) = C[FX(x), FY (y)] = C(u, v) (1)

where FX,Y (x, y) is the joint cumulative distribution function (cdf) of the random variables
X and Y . A copula function with a strictly monotonically decreasing generator function
φ : [0, 1]→ [0,∞] with φ(1) = 0 belongs to the Archimedean copula family. The general
form of one-parametric Archimedean copulas is

CΦ(u, v) = φ−1[φ(u) + φ(v)] (2)

where Φ denotes the copula parameter. Here we consider three Archimedean copulas,
namely the Clayton, Frank, and Gumbel copulas, since they are relatively easy to con-
struct, flexible, and capable to cover the full range of tail dependence. The Clayton
copula has lower tail dependence, while the Frank copula has no tail dependence and the
Gumbel copula has upper tail dependence ([10]). To identify the best copula to model
the prevailing dependence we exploit the parametric bootstrapping goodness of fit test
(GoF-test) for copulas as proposed in [5]. This test is based on Cramér-von-Mises statis-
tics. The acceptance or rejection of a copula depends on the p-value which is calculated
via bootstrapping procedures. Large p-values support its suitability whereas small values
indicate its infeasibility to model the dependence structure in the given dataset. In hy-
drology and hydraulic engineering one is mostly interested in the recurrence intervals (or
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return periods, RP) of certain extreme events. In the univariate case the RP is commonly
defined as

Tuni =
µT

1− FX(x)
. (3)

Where FX is the cumulative distribution of the variableX to be modelled and x represents
the corresponding design quantile. µT denotes the mean interarrival time (typically given
in years; when using annual maxima values, µT equals 1 year). The definition of the return
period (Equation 3), however, is not directly applicable to the multivariate case. In the
scientific community there is still an ongoing discussion about the definition of joint return
periods (JRP) (see e.g. [6] and references herein). Here, we follow the approach introduced
by [11]. This concept of the JRP is based on the bivariate cumulative distribution function
FXY (x, y), formulated by the bivariate copula function CUV (u, v) (Equation 1) and the
cdf’s of the marginal distributions. This JRP is often denoted as AND-joint return period
(Tˆ) as it expresses the probability that X and Y exceed the values x and y at the same
time: P [X > x ∧ Y > y]. Hence, the bivariate AND-JRP Tˆ can be written as

T X̂,Y =
µT

P (X ≥ x ∧ Y ≥ y)
=

µT

1− FX(x)− FY (y) + C[FX(x), FY (y)]
(4)

Since the method to derive the JRP is of minor interest in this study, we focus on bivariate
design events derived by the AND-joint exceedance probability based on Equation 4.

2.2 Considering non-simultaneous occurrence of the variables

When modeling two random variables X and Y , it is (especially in hydrology) essential
to cover the dependence (or independence) of the physical genesis of the extreme events.
Block maxima series can be gathered for the two variables of interest independently and
then used in the multivariate statistics. Although there might be an analytical depen-
dence between both variables, the two maxima values (for example in a year) may have
not occurred simultaneously. It might even be that the simultaneous occurrence is phys-
ically impossible or at least very unlikely. When modeling the common parameters flood
peak discharge (Q) and flood volume (V ) of a small catchment for instance, where snow
melt influences the discharge regime, it is very unlikely that the highest values of Q and V
coincide. This is because in such cases high runoffs are mostly caused by short but inten-
sive precipitation events whereas floods with high volumes often emerge from moderate
but continuous rainfalls or even snow melt.

Therefore, an obvious approach consists in modelling the block maxima series of X (from
here on referred to as XBM) and the simultaneously measured value of Y (YSIM) and vice
versa (i.e. YBM and XSIM). This requires fitting four marginal distributions FXBM

(xBM),
FYBM

(yBM), FXSIM
(xSIM), and FYSIM

(ySIM) to the data sets as well as two copula func-
tions (CI and CII) to model the mutual dependency between the variable pairs (see the
following Equation 5):

FI(xBM , ySIM) = CI [FXBM
(xBM), FYSIM

(ySIM)] = CI(uBM , vSIM)

and
FII(xSIM , yBM) = CII [FXSIM

(xSIM), FYBM
(yBM)] = CII(uSIM , vBM) (5)
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In cases where both variables always occurred simultaneously (i.e. XBM = XSIM

and YBM = YSIM the two corresponding marginal distributions would be identical,
FXBM

= FX ∧ FYBM
= FY . This would furthermore result in identical dependence struc-

tures of the variables and hence in identical copula functions CI = CII .

When analyzing flood peaks of two streams at a confluence it is unlikely that all block
maxima values occur simultaneously. Therefore, it can be assumed that in the majority
of cases four marginal distributions and two distinct copula functions are required to fully
describe the stochastic behavior of the system.

The question that instantly arises from applying this procedure is how the relevant design
events can be derived from the two copulas. This can be realized by overlapping the
quantile-isolines of the distribution functions FI and FII . The outer envelope of both
quantile-isolines then contains all possible variations of the design relevant data combina-
tions.

For a given α ∈ (0, 1) we define the quantile-isoline functions qI(x) and qII(x) implicitly
by the equation FI(x, qI(x)) = α, and similarly FII(x, qII(x)) = α. The envelope is then
given by the maximum of both functions:

x→ max {qI(x), qII(x)} (6)

3 Case study

The methods outlined above are exemplarily applied to the confluence of the rivers Rhine
and Sieg in Germany. The Rhine River has a total catchment size of 185,300 km2 with
a total flow length of 1,239 km. At the confluence of both rivers the Rhine River drains
a catchment of 141,008 km2 with a water course length of 659.5 km. The run-off regime
is dominated by winter floods occurring mostly between November and March. At river
station 654.8 (4.7 km upstream of the confluence) gauge station Bonn has measured the
discharge since 1820. For this study the daily mean discharge time series from 1954 to
2012 was available. The average discharge over this period was MQ = 2,082 m3/s with
a standard deviation of s = 1,056 m3/s. The two highest discharges were observed on 23
December 1993 and 30 January 1995 with both HHQ = 10,500 m3/s. The flood indicator
to be modeled in this study is the annual maximum discharge series (AMAX). The mean
annual maximum discharge (MHQ) at gauge Bonn amounts to 6,383 m3/s. At river
station km 659.5 the Sieg River enters the Rhine. The Sieg has a total catchment size of
2,856.9 km2 with a water course length of 155.2 km. 8.4 km upstream of the confluence
gauge Menden is located. We use the time series of 15-minute mean discharges covering
the 48 year period from 1964 to 2012. The overall mean discharge is MQ = 52.6 m3/s
with a standard deviation of s = 68.5 m3/s and there are no major channels entering the
Sieg River between the gauge and the confluence with the Rhine. The highest discharge
at gauge Menden was measured on 23 February 1970 with HHQ = 931 m3/s and the mean
annual maximum discharge amounts to MHQ = 477 m3/s. Although the run-off regime
at River Sieg is also dominated by winter floods (see Figure 3), only 24 of the 48 annual
maximum discharges of both rivers occurred within a time window of 14 days. In order
to take this into account we use two bivariate data sets for the statistical analyses: (i) the
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annual maximum discharges of the main stream (from here on referred to as peak on main
stream, PM) and the concurrent flows of the tributary (CT) and (ii) the annual maximum
discharges of the tributary (PT) and the concurrent flows of the main stream (CM). In
order capture discharges that occurred almost concurrently, CT and CM can be chosen
as the maximum values within a certain time period around the PM and PT values. A
meaningful choice of the size of this time window can be, for example, based on common
criteria which are usually considered to assure that two flood peaks are independent.
Following [13], the time window can be selected depending on the catchment size of the
river to ± 5, 7 or 10 days. Due to the small catchment size of the Sieg River (of only
2,856.9 km2) and a corresponding average run time of flood waves of 20 hours, we selected
a time window of ± 1 day. Following this definition, only three annual maximum discharge
events of both rivers can be considered as ‘simultaneous events’.

4 Results

First we fit the marginal distributions to the four samples comprising the peak on the
main stream, concurrent flow on the tributary, peak on the tributary, and concurrent flow
on the main stream. For identifying the best fitting distribution functions we calculated
the root mean square error of the theoretical non-exceedance probabilities compared to
the empirical non-exceedance probabilities. For the two AMAX series the Generalized
Extreme Value distribution (GEV) fits best, whereas the Log-Normal (LogN) distribu-
tion fits the two concurrent flow series best. The 100-yr event of the AMAX series at
the main stream, for example, amounts to 10,820 m3/s. In case of an PM-PT model, i.e.
a simultaneous occurrence of both annual maximum discharges, the second parameter
(AMAX at tributary) would amount to 894 m3/s, whereas the actual 100-yr discharge
of the concurrent flow series at the tributary only amounts to 568 m3/s. Ignoring these
differences in the bivariate statistical analyses would strongly affect the results and poten-
tially lead to a costly overdesign. Next, the two bivariate copula functions can be selected
and fitted to the parameter pairs PM-CT and CM-PT. For the PM-CT dataset only the
Gumbel copula (ΦGumbel = 1.631) passes the goodness of fit test on the 95% confidence
level. For the CM-PT dataset p-values are high for all three copulas and all pass the GoF
test. Therefore, as a second test, we compare the observed data pairs with those simulated
with the copulas and transformed to their original units with the marginal distributions
(see Figure 1). Although the Clayton copula leads to the lowest p-value we select it since
it provides the best optical fit.

In Figure 1 the difference of the statistic results is evidently illustrated. Considering for
instance an event combination of 8,000 m3/s (Rhine River) and 400 m3/s (Sieg River)
for the PM-CT case, the annual exceedance probability would result to P = 0.05 (20-yr).
The same event would lead in the CM-PT case to an annual exceedance probability of
some P = 0.02 (50-yr).

Considering the two statistic results (PM-CT and CM-PT) the exceedance probabilities
of discharge pairs still vary significantly. Therefore it is required to derive an overall
quantile-isoline representing the results of both statistics. This is achieved by overlap-
ping the quantile-isolines of both copulas to determine the design relevant envelope with
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Figure 1: Results of the bivariate statistic for the data pairs PM-CT (left) and CM-PT
(right)

Equation 2. In Germany flood protection structures are usually designed to withstand
a 100-yr event; thus we focus on discharge combinations at the joint exceedance level
of P = 0.01. The red line in Figure 2 represents the outer envelope of the overlapped
quantile-isolines. The envelope is bounded by the 99.5% values of the univariate design
values of the given annual exceedance probability (here P = 0.01). This boundary was
chosen since discharge combinations on the envelope below or left of these points would
lead to lower design water levels in the confluence reach and do not need to be further
considered.

Figure 2: Overlapped quantile-isolines with annual exceedance probability of P = 0.01
derived from the two bivariate copulas fitted to the PM-CT and CM-PT data
sets
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As in common bivariate statistics, the question arises which combination along the
quantile-isolines is most relevant for design purposes, i.e. which combination leads to the
highest design parameter (here water level). We recommend employing numerical models
to compute a variety of combinations on the desired quantile-isoline. The combination
leading to the highest design parameter should than be chosen for the design.

5 Conclusions

We introduced a novel approach to model multivariate data when the maxima of both
variables in a year are unlikely to occur always simultaneously. The approach is based on
performing common bivariate statistical analyses with suitable copula models considering
the block maxima of each variable together with the simultaneously observed values of
the other variable and then overlapping the quantile-isolines. This allows defining the
design relevant data pairs lying on the outer envelope of both isolines of a given quantile.
The introduced methodology can be applied to any data set (also for higher dimensions
than the bivariate case) where the maximum values of the variables of interest do not
always occur simultaneously. Furthermore, the basic approach of this method also pro-
vides several advantages for other multivariate models, such as linear correlation models,
where the non-simultaneous occurrence of extremes is automatically descripted in the
joint probability density function.
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Abstract. When meta-models are fitted to the underlying data it is essential to val-
idate the model by a trustworthy criterion. Many industry relevant applications are
characterized by a high input parameter dimension and time consuming, cost intensive
deterministic computations. In these typical cases the data size is not much higher than
the amount of coefficients in the polynomial equation of the meta-model, which will lead
to an overestimation of the model quality determined by the Coefficient of Determination
(CoD).
An alternative benchmark criterion for response surfaces can be delivered by cross-
validation (CV), where an overestimation of the meta-model quality is unusual.
This paper will use a published industry relevant example [4] to compare the simple CoD
with a Monte Carlo cross-validation CoD (CoDMCCV ). Detailed investigations of the
MCCV-method are made using a fast calculating test-model with similar characteristics
as the original deterministic model. The results will show the influence of the splitting
ratio, the number of cross-validation runs and the number of the deterministic samples in
the database on the CoDMCCV result values and their variance. To predict the variance
we will give correlations, for a code internal adjustment of MCCV calculation parameters.
The discussion will point out the importance of the sample to coefficients ratio (SCR)
and conclude the advantages and disadvantages of the tested method.
a, b, c, d, e, f, g, h adjustment parameter O order of response surface
C number of coefficients SCR sample to coefficient ratio
CoD Coefficient of Determination SR splitting ratio
CoDMCCV cross-validation CoD SRCV simple random CV
CV cross-validation x input variable
E number of input variables y result variable
i, j count variables ỹ meta-model result variable
K number of folds y mean of variable
KFCV K-fold CV σ standard deviation
MCCV Monte Carlo CV t training (samples)
n number of samples v validation (samples)

1 Introduction

“When a validity coefficient is computed from the same data used in making an item anal-
ysis, this coefficient cannot be interpreted uncritically. And, contrary to many statements
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in the literature, it cannot be interpreted ‘with caution’ either. There is one clear inter-
pretation for all such validity coefficients. This interpretation is – ‘Baloney!’” [1]
This conclusion by Cureton should remind the investigator of any data fitting problem,
that the commonly used Coefficient of Determination (CoD) is not a stable criterion for
model fitness estimation in any way. In the second part of this paper we will discuss
the dependency of the CoD on the number of coefficients n in the meta-model and the
number of simulations in the dataset. Afterwards we will show how this misleading model
fitness interpretation by the CoD can be avoided by using a cross-validation procedure.
Cross-validation as a method for model fitness evaluation was proposed by Mosier [6]. The
concept of cross-validation is to use separate data sets for model training and evaluation
respectively. Since in most real applications the amount of data is limited, it is necessary
to split the number of data-points n into a training data set nt and a validation data set
nv. Over the last decades different kinds of cross-validation had been proposed, which
uses different splitting procedures. A selection of them should be described here.

1.1 Cross-validation procedures

Leave-one-out cross-validation (LOOCV), which is also called delete-one CV or ordi-
nary CV is the simplest exhaustive CV procedure. Every single data point is successively
left out from the training dataset and used for validation as described by Stone [11]. The
number of CV-runs is equal to the number of samples n in the dataset. As a test criteria
for the LOOCV Myers and Montgomery [7] suggest the R2

prediction that uses the predictive
error sum of squares (PRESS)

R2
prediction = 1− PRESS

SST
= 1−

∑n
i=1[yvi − ỹvi]2
SST

(1)

and the total sum of squares (SST )

SST = yTy − [
∑n

i=1 yi]
2

n
. (2)

Alternatively they show the possibility to compute the R2
prediction without cross validation

by using the diagonal elements hii of the hat matrix H = X(XTX)−1XT

R2
prediction = 1−

∑n
i=1

(
yi−ỹi
1−hii

)2

SST
. (3)

Leave-p-out cross-validation (LPOCV) or delete-d multifold CV (Zhang [13]) is very
close to the LOOCV, but here a defined number p of data points are left out from the
training set and used to validate each response surface. This procedure is also exhaustive
since every possible subset p is left out once.

K-fold cross-validation (KFCV) also called V-fold cross-validation is computationally
less expensive compared to LOOCV and LPOCV. It was introduced by Geisser [3]. The
complete dataset is split into K subsets of approximately equal size n/K. Each subset is
successively used as validation set, whilst the other subsets are used to train the response
surface. The number of CV-runs is equal to K – the number of folds which is defined
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between 2, . . . , n but should not be higher than n/3 in a practical sense. If K would
be equal to n the procedure would be identical to LOOCV. The described method is
a partially data splitting procedure since not every possible combination of validation
subsets is used.

Another method with partial data splitting is simple random cross-validation
(SRCV) or Monte Carlo cross-validation (MCCV) respectively. The method has
been presented by Picard and Cook [8] and has been compared to the above listed pro-
cedures by Shao [10] and Xu [12], while they demonstrate outperforming results for the
MCCV applied in model selection. Compared to the KFCV the subsets are selected ran-
domly. Moreover the number of CV-runs and the validation subset size expressed by
the splitting ratio SR = nt/n are independently selectable. This additional freedom of
method configuration makes it necessary to identify practical ranges for the configuration
parameters.

The MCCV method will be evaluated in paragraph three of this paper by using a test-
model, which is emulating an industry relevant probabilistic investigation. Next to the
variation of the splitting ratio SR = nt/n and the number of CV-runs we will also show
the influence of n – the number of data points in the complete data set. We will also
compare the CoD [2], [9]

CoD =

( ∑n
i=1[(ỹi − ¯̃y) · (yi − ȳ)]√∑n

i=1(ỹi − ¯̃y)2 ·∑n
i=1(yi − ȳ)2

)2

=

(
Cov(ỹ,y)√

V ar(ỹ) ·
√
V ar(y)

)2

(4)

to the CoDCV results that are computed in the same way but using only the selected
validation samples

CoDCV =

( ∑nv

i=1[(ỹiv − ¯̃yv) · (yiv − ȳv)]√∑nv

i=1(ỹiv − ¯̃yv)2 ·
∑nv

i=1(yiv − ȳv)2

)2

=

(
Cov(ỹv,yv)√

V ar(ỹv) ·
√
V ar(yv)

)2

(5)

to discuss the usefulness of cross-validation. Note that none of the response surfaces
computed with a training subset and validated with the corresponding validation subset
is used as the final meta-model. The polynomial equation of the final meta-model is
computed with all data points.

In general it is very important to know about the predictability of a meta-model since
it might be used to rapidly produce new data with a Monte Carlo simulation using the
polynomial equation. Another application is to estimate the importance of the input pa-
rameters using the meta-model, which is expressed by the Coefficient of Importance (CoI).
If the model fitness to the underlying data is lower than expected by the investigator it
might lead to misinterpretation of parameter importance or erroneous interpretations with
the new data calculated on the meta-model.

1.2 Deterministic test-model used for evaluation

The probabilistic investigation of the impact of manufacturing variability on the perfor-
mance of a ten stage high pressure compressor, by Lange et al. [4] is in the core of interest
in this paper. In his investigation Lange described the rotor blade geometry of each rotor
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stage by 14 classical profile parameters. Due to the ten compressor stages there are 140
probabilistic input variables in the complete simulation.
The parameter scatter has been determined by real blade measurement with a 3D scan-
ner. For the probabilistic post processing by meta-models, linear regression models have
been used, which need 141 data points in minimum.
Since the CFD simulation of a ten stage compressor at seven operation points took about
3 days on an Intel® Core™ i7 machine, it was decided to use 200 virtual realizations
created by optimized Latin Hypercube sampling. The results of this huge probabilistic
simulation showed that there are mainly two important parameters in each stage, with a
variation of their influence depending on the stage and the operation point. The fitness
of the meta-models evaluated with the CoD is between 0.95 and 0.98.

For a detailed investigation of the CoD behavior and possible improvements on meta-
model benchmark by cross-validation it was necessary to replace the above described
deterministic model by a fast calculating test-model. The created test-model follows the
idea of broadly emulating the main characteristics of the original model, but neglecting
the operation point variation.

The here used HiPar-test-model (for high input parameter space) is using 140 input
variables xi with i ∈ {0, . . . , 139} computing six different solution variables y1, . . . , y6.
The input space of 140 dimensions is internally split into 10 groups - similar to the 10
compressor stages, controlled by k ∈ {1, . . . , 10}. Hence there are 14 input parameters in
each group.
The HiPar-test-model uses a combination of two public test-models mentioned in the
collection of Molga et. al [5]. For i = iG ∈ {0, 14, 28, 42, . . . , 126} a modified version
of Griewangk’s test function is used. Two variables xi and xi+1 are computed within
this function with a strong influence on the solution. Hence two variables of each group
have a higher importance. If i 6= iG Rosenbrock’s test function is used. It has a lower
influence and is hard to approximate by a polynomial regression model. The standard
formulations of the test functions can be found in [5]. The modified Griewangk function
as implemented in the deterministic test-model is as follows:

yGriew.k = a

(
bxi

(e1·(c1−j)/c1) + dbxi+1
(e2·(c2−j)/c2)

)
+ f

(
cos(bxi)√
i+ 1

· cos(bxi+1)√
i+ 2

)
. (6)

The step-wise exponent reduction using variable j as a counter is deactivated by setting
j to a fixed value of 1. All other model adjustment parameters are given in Tab. 1.

yRose.k = yGriew.k +

p+q(k)=139∑

i=p+q(k)=0

[
h1(xi+1 − x2i )2 + h2(1− xi)2

]
(7)

y1, . . . , y6 =
10∑

k=1

[
g

g + k
· yRose.k

14

]
(8)

Rosenbrock’s function as implemented in the test-model is defined by equation (7), where
p ∈ {1, . . . , 13} and q(k) = 14 · (k − 1). So that, i ∈ {1, . . . , 13}; {15, . . . , 27}; . . . . The
results of each input variable group are added up to the result value y1, . . . , y6, as shown
in equation (8). There is a parameter influence reduction with increasing k.
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The parameter settings for the six output variables has been chosen to determine first
order response surfaces with Coefficients of Determination of 0.98, 0.97, 0.96, 0.95, 0.94,
0.93 using a number of samples of n = 200. For a higher sample size the CoD will decrease
as described in the next paragraph. All 140 input parameter distributions are generated
by latin hypercube sampling with an uniform distribution in the interval [0,1].

variable y1 y2 y3 y4 y5 y6
a 1/175 1/150 1/185 1/240 1/250 1/150
b 600 600 600 600 600 600
c1 140 110 85 60 66 75
c2 300 180 200 500 500 300
d 1.3 1.3 1.3 1.4 1.3 1.3
e1 1.44 1.40 1.45 1.49 1.51 1.455
e2 1.28 1.26 1.3 1.23 1.2 1.3
f 1000 200 400 300 2500 300
g 30 30 30 25 20 30
h1 5 7.5 9.5 10.45 11.3 17.9
h2 3 2 2.2 12 13 2

Table 1: Model adjustment parameter setting in the HiPar-test-model for the six different
meta-models y1, . . . , y6

The test-model is coded in C++ and is designed very flexible. It can be easily changed
in its amount of input parameters and other model characteristics, to perform further
investigations e.g. on the computation time in chapter 3.3. Next to the described test-
model with six solution variables, we used two other test-model types to enlarge the
insight of this investigation for some aspects. So there are up to 22 meta-models included
in the result analysis.

2 Characteristics of the CoD

The used test-model with 140 input variables is designed to produce data which can be
approximated by first order response surfaces with CoD values between 0.93 and 0.98 for
the six result variables, which is the same range as in the ten stage compressor model
investigated by Lange [4]. This is of course only true for the same sample to coefficients
ratio of SCR = 1.4 when the number of samples is n = 200. It is important to see the
models CoD values always with respect to the existing SCR, since the CoD strongly
depends on the SCR.

The left graph of Figure 1 shows the CoD for the six solution response surfaces as function
of the SCR. For a SCR of 1.4 the values are equal to the original deterministic model.
By increasing n, the estimated quality of the meta-models is strongly decreasing. The
slope of the decrease is stronger for models with lower CoD values.
When the SCR reaches 12 the decrease stops and the CoD becomes nearly constant with
values between 0.71 and 0.91. Here the meta-model quality reaches its real maximum.
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Below the saturation threshold of SCR = 12 the quality of the meta-models is clearly
overestimated by the CoD.

Figure 1: left: CoD of the six HiPar-response surfaces as function of the sample to coef-
ficient ratio (SCR), right: Difference between CoD and target-CoD (tCoD) as
function of the SCR for all tested meta-models

Figure 2: left: CoD as function of SCR, green symbols are above and red symbols are
below the saturation threshold, right: tCoD ranges as function of the 1.4CoD
revealed by the used 22 test-models

To verify this connection between the CoD saturation and the SCR, some more test-
models should be used. The right graph in Figure 1 shows the absolute difference of the
CoD to the target-CoD (tCoD), which is the average of the CoD at the two highest
SCR-values. The shown data include all 22 tested meta-models.
For models with a very high tCoD close to unity the deviation is small for the complete
SCR-range. In this case the saturation starts at low SCR values of about 3.
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The highest observed deviation values (0.4− 0.6) for a SCR of 1.4 occur for meta-models
with a low tCoD < 0.5.
All models with a tCoD between 0.5 and 0.975 show a similar saturation behavior. The
SCR-range of their saturation is between 7 and 22. The included trend line approximates
the averages of all shown values.

Figure 2 gives the computed CoD depending on the SCR, while the color of the data
points shows if the CoD is already saturated (green) or has still a difference to the tCoD
higher than 0.015. Most of the points (74%) achieve the saturation threshold in a SCR
range between 7 and 22. Moreover there is the clear tendency, that models with a low
tCoD achieve the saturation at high SCR values. An explicit connection between the
two variables can not be given due to the high observed scatter in the data and a quite
small database. But the chart is divided into three areas, that can help the investigator
to decide whether the computed CoD is reliable or not. In the red area we observed no
saturated result. In the green area all computations are close or equal to the tCoD. In the
yellow marked area we observed both, results above and below the saturation threshold.

The right graph of Figure 2 shows the connection between the CoD computed at an SCR
of 1.4 (1.4CoD) and the tCoD. The data points include the 1.4CoD values averaged
over a 0.025 wide range. For the first point this is for example the range between 0.975
and 1. The vertical axis represents the mean, min and max values of the corresponding
tCoD values. An interpretation of the shown data derived by 22 meta-models can be for
example: If the 1.4CoD is 0.97, the saturated tCoD can be between 0.48 and 0.87.

Generally spoken, it is important for the interpretation of any CoD value to know about
the SCR as well. If the CoD should be useful as test criterion the SCR should be in or
above the saturation range (7− 22).

3 Results of the Monte Carlo cross-validation

In this part we want to analyze the characteristics of the CoDMCCV by varying the compu-
tation settings splitting ratio (SR), the number of samples (n) and the number of CV-runs
for different meta-models. The splitting ratio has been varied between 0.5 and 0.995. The
number of samples n has been varied between 200 and 1763 which corresponds to a SCR
between 1.4 and 12.5. The number of CV-runs is varied between 20 and 2000, while each
run includes the sample splitting, computation of a response surface using the training
samples nt and the computation of the single-run-CoD using nv. The result CoDMCCV

is the average of all this CV-runs.
If the complete calculation with all its internal CV-runs is repeated, the resulting

CoDMCCV will not be exactly the same since each selection of nv is randomly. But if
the number of CV-runs is high enough the variance of the CoDMCCV will be small. To
estimate the variation of the results in chapter 3.2, each computation has been repeated
20 times with constant computation settings.
The data points shown in Figure 3 are averaged over the 20 repetitions. The splitting
ratio is SR = 0.975. This leads to a number of validation samples nv = 5 for n = 200.
The left graph compares the CoD with the CoDMCCV for all calculated SCR values. The
CoDMCCV predicts a much lower response surface quality in particular if the SCR is low.
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Figure 3: left: Comparison of CoDMCCV that is averaged over 20 repetitions to the CoD
results for the HiPar-test-model; middle: average of CoDMCCV and CoD; right:
mean error of response surface approximation normalized with minimum mean
error tested with a complete independent sample set of n = 3000

For the six response surfaces of the HiPar-test-model there is no overestimation of the
quality by the CoDMCCV . For SCR values in the saturation range, CoDMCCV and CoD
converge into each other.
The improving response surface quality while increasing the SCR is shown by the right
graph in Figure 3. Here we present the mean error computed with 3000 independent data
points normalized with the minimum mean error that occurred. The graph shows, that
the response surfaces at a SCR = 1.4 have about 14% to 20% higher errors than the
best computed meta-models. The meta-models with minimum errors are reached at SCR
values of 7 or higher.

The center graph in Figure 3 shows the average of the CoDMCCV and the CoD up to an
SCR of 12.5 - the last given values present the CoD. These average values are nearly
constant over the complete SCR range, hence this criterion can be used as a rough
estimator of the tCoD that would be reached with a big database. The predictability of
the tCoD worked well for 91% of our test cases (20 out of 22 meta-models).

3.1 Influence of the splitting ratio

Figure 4 shows the variation of the splitting ratio for the complete test range. There is a
positive correlation between the SR and the CoDMCCV if the SCR is low, e.g. SCR = 1.4
as shown in the left graph. Here the low SR values 0.71 and 0.75 with many validation
samples and the lowest possible nt do not give useful results. The practical relevant
SR-range for a low SCR is here between 0.9 and 0.975.

For a SCR of 3 the influence of the splitting ratio has decreased. Here the suggested
range is between 0.9 and 0.975 as well.

Response surfaces with a large database are only marginal affected by a SR variation
(Figure 4 right). The influence is only visible for an extremely high splitting ratio of
0.995, with 5 samples in the validation group. The useful SR-range is between 0.8 and
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Figure 4: Influence of the splitting ratio (SR) on the CoDMCCV that is averaged over 20
repetitions and shown for different data sizes

0.975.

3.2 Result variation due to randomness

Due to the random selection of the test samples, the results of the CoDMCCV will vary
although the used data set is fixed for constant SCR. The amount of this variation
depends on the number of CV-runs and on the splitting ratio.

For the used test-model the σ is strongly increasing for very high splitting ratios above
0.975. For lower SR values there is a low positive correlation between SR and σ. For the

Figure 5: Variance of the MCCV results depending on model type, CV-runs and SCR

implementation of the MCCV-procedure in a probabilistic code it is important to predict
the variation of the CoDMCCV result value for a specific model type, to compute only
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as many CV-runs as necessary to reach a specific min-max-range or σ of the CoDMCCV .
Therefore the three different model types have been analyzed regarding their dependency
of the variation expressed by sigma or the min-max-range respectively. Graph 5 shows this
data with SCR as parameter. Symbols represent the results of the simulations (averaged
over three relevant splitting rations and all the models of the given type) and solid lines
are the trend-lines for the data-points. To estimate the necessary number of CV-runs we
developed correlations

range =
[−0.0081 · C + 1.6114] · SCR[1.5986·E·O

C
−2.1763]

√
CV-runs

(9)

σ =
[−0.002 · C + 0.4265] · SCR[1.5063·E·O

C
−2.1283]

√
CV-runs

. (10)

The dashed lines in Figure 5 represents the approximation of σ (10).

3.3 Computation time

Figure 6: Computation time of the MCCV

The computation time of the CoDMCCV is influenced by the number of CV-runs and the
model size. Figure 6 shows the measured time for the MCCV of a linear meta-model.
The number of coefficients is equal to the number of input variables plus one. The shown
data points are scaled to 100 CV-runs. The used machine is a ThinkPad® T61 with a
64bit OS, 4GB RAM and a Intel® Core™ 2 Duo T8100 at 2.1Ghz. There is plenty of
room for improvements on hardware side and on the code optimization as well.
Figure 6 reveals, that there is a strong increase in computation time, when the model size
exceeds 100 input parameters. Fortunately it was shown in chapter 3.2, that huge models
need less CV-runs to achieve the same variance. Nevertheless the computation time will
increase for models with a high input parameter dimension, since a minimum number of
CV-runs will be necessary. This limit can be between 50 and 100.
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Moreover the graph shows that there is a strong dependency on n, the number of samples
in the database, which is here expressed by the SCR. For a model with 200 dimensions
the computation needs 50s when 400 samples are used (SCR = 2) and 350s when 2000
samples are used (SCR = 10).

4 Conclusions and summary

The presented paper showed that the CoDMCCV calculated by MCCV can give a more
realistic quality estimation of the response surface than the CoD. This is in particular
true for small sample to coefficient ratios (3− 8). Here we started with very small SCR-
values of 1.4, where a strong overestimation of the meta-model quality by the CoD was
visible. In the saturated range, where the CoD becomes constant while enlarging the
database, the CoDMCCV and the CoD converge into each other. Using the results 22
different meta models we developed a graph (Figure 2 left) that can be used to estimate
the reliability of any computed CoD value.

The cross-validation results are influenced by the splitting ratio (SR) only for very low
sample to coefficient ratios (SCR). In our test-model with 141 coefficients in the response
surface equation, a high SR of 0.975 showed good results for all sample to coefficient ratios.

For the small test-models with only five input dimensions, smaller splitting ratios (0.6−
0.9) work well.
For high SCR-values the influence of the SR is negligible.
The disadvantage of a high splitting ratio is the increasing scatter of the result values. The
investigation showed that the σ, estimated by a twenty times repeated computation, is
strongly increasing if the number of validation samples is below 10 in our HighParameter-
test-model.

To reduce the standard deviation for a fixed SCR, the number of CV-runs can be in-
creased. The necessary number of runs to achieve a target σ or min-max-range can be
estimated with the developed correlations given in (9) and (10). But be aware that the
equations are developed with the data of only three different test-model-types with all
together 16 meta-models.
The reason to prefer low numbers of CV-runs, is the computation time, which is strongly
increasing for high dimensional models. Fortunately these models showed lower variances.

A good estimation of the target-CoD that would be reached if the SCR is high (>7 to
22) can be found by averaging the CoD and the CoDMCCV . The evaluation of 22 meta-
models showed that for 91% of the tested models the difference to the target-value is small
in the complete SCR-range. Hence this additional criterion can be used to predict the
possible meta model improvement that can be achieved by enlarging the database.

An overestimation of the response surface quality by the CoDMCCV can occur at very
low SCR values (<3), combined with a low target-CoD (<0.5). This untypical CV-result
occurred for three out of 22 meta-models. The observed effect must be investigated in
more detail by using more test meta-models with a low quality. This was not the core of
interest in the presented investigation.

Future work on this topic should reinforce the findings in this paper by using a greater
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variety of test-models. Moreover we will include an alternative validation sample selection
algorithm. The K-fold cross-validation will deliver new data, that will be compared with
the current results. Advantages and disadvantages of both procedures will be compared.
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On the uncertainty modelling of membrane action in
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When a continuous reinforced concrete slab is excessively loaded or a certain support is
lost due to an accidental event, membrane action can be activated in order to generate
an additional load transfer to neighbouring supports, which can considerably enhance
the load-carrying capacity. This can delay or even prevent a progressive collapse and
increase the robustness of concrete structures. In this contribution, the sensitivity of the
collapse load of a one-way RC slab to variations of the different design variables is assessed,
both for an undamaged situation and a damaged situation considering the removal of an
intermediate support. Consequently, a probabilistic model for the load-bearing capacity
is established and finally the quantification of the structural robustness is discussed using
deterministic and reliability-based robustness indices.

1 Introduction

Interest in the robustness of concrete structures increased strongly after the partial col-
lapse of the apartment building at Ronan Point (UK) in 1968. This event resulted in
extensive research associated with the progressive collapse of structures. In addition, the
terrorist attacks on the World Trade Centre in New York and the Pentagon in Washington
in 2001 triggered a renewed interest in this research topic.

Numerous recent publications have been focusing on the concept of robustness, the defini-
tion of robustness indicators, etc. Different design strategies that increase the robustness
have been identified, one of which is to provide alternative load paths. However, only
limited research is available with respect to the accurate quantification and modelling of
the residual bearing capacity of structural systems after the establishment of an alterna-
tive load path. In case of reinforced concrete slabs, such an alternative load path can be
obtained by the transition from bending behaviour to compressive or tensile membrane
action. The appropriate modelling of the residual bearing capacity after the establish-
ment of an alternative load path is of crucial importance in order to adequately quantify
structural robustness using robustness indicators and to facilitate robustness-based design.

In this contribution some first steps are undertaken to quantify and incorporate the uncer-
tainties which are associated to the development of tensile membrane action in concrete
slabs after the accidental removal of a support. The outcomes of the experimental and
numerical analysis of a set of large-scale tests are considered. A sensitivity study is per-
formed in order to provide insight in the influence of most important variables on the
load-bearing capacity. Consequently, the effect of the membrane action on the struc-
tural reliability quantification is investigated and discussed. Finally, some observations
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Figure 1: Schematic representation of the response curve of an unrestrained slab and a
fully restrained slab under membrane action

are made with respect to the quantification of robustness indicators and some critical
observations are made.

2 Membrane action

2.1 General behaviour of RC slabs subjected to membrane action

Figure 1 shows a typical load – deflection diagram for an unrestrained slab as well as
for a fully restrained slab. In case no horizontal restraint is present, the slab will deflect
under the applied load until a yielding plateau establishes and the slab fails either due
to concrete crushing or rupture of the reinforcement. No increase in the load-carrying
capacity is observed.

Considering a slab with perfect edge restraints against lateral displacement, compressive
membrane action is induced at small deflections due to restraining the outward movement
along the slab edges. This may offer a much higher flexural load than the maximum load
predicted by [7] Johansen’s Yield Line Theory (1962), especially in case of elements with
small slenderness. After the outermost flexural load has been reached in point A, the load-
displacement graph shows a rapid decrease of the supported load with further increasing
deflection as a result of the reduction of compressive membrane forces. Further, near point
B, membrane forces reach the stage where they change from compression to tension. The
slab’s boundary restraints start to resist inward movement of the edges. Accordingly,
cracks extend over the full thickness of the slab and the yielding of steel reinforcement
is established due to the elongation of the slab surface. It is observed that beyond point
B the reinforcement acts as a tensile net that enables additional load-carrying capacity
under increasing deflections. The load increases for a second time until the rupture of the
reinforcement at point C.
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(a) (b)

Figure 2: Global overview of the real-scale test set-up: original system 2a; after collapse 2b

In case of robustness quantification or robustness-based design, the quantification of the
residual capacity of the alternative load path established by the development of tensile
membrane action becomes of crucial importance.

2.2 Experimental and numerical investigations into tensile
membrane action

In order to investigate the tensile membrane action under accidental events in more detail,
an experimental test set-up was developed as depicted in Figure 2.

The configuration basically consisted of a 160 mm thick and 1800 mm wide reinforced
concrete slab strip. The total length of the specimen was 14,30 m with the distance
between the inner supports and the central support being 4 m, changing to one span of
8 m at the removal of the latter, simulating an accidental situation. As it was the goal
to investigate only tensile membrane action (not compressive membrane action), outward
horizontal movement of the slab was not prevented, while inward movement was restricted
by concrete anchor blocks.

A detailed description of the test set-up and the results for a first experimental large-scale
test is described in [4](Gouverneur et al., 2013). In total, three different slabs were tested.
Each slab specimen was exposed to an artificial failure of the central support and subse-
quent vertical loading until collapse. The first slab strip was reinforced with continuous
longitudinal reinforcement bars. A second reinforced concrete slab strip differing only
in the reinforcement arrangement, considering a more realistic situation of reinforcement
curtailment according to the [2] Eurocode EN 1992-1-1 (2004) was tested as well as a
third concrete slab specimen with a reduced thickness of 140 mm.

2.3 Numerical modeling

In the present study, an advanced finite element software (TNO Diana) was used to
perform the analysis of a reinforced concrete slab subjected to large deformations.

As a result of the symmetry of the specimen regarding its geometry and loading, only half
of the specimen was modelled. The geometrical nonlinearity was taken into account by
a total Lagrange approach. Eight-node quadrilateral isoparametric plane stress elements
(CQ16M) based on quadratic interpolation and Gauss integration were used to model
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Figure 3: Load-displacement curves slab 1 (continuous reinforcement), slab 2 (curtailed
reinforcement) and slab 3 (reduced thickness) in comparison with numerical
analyses

the concrete elements. For reinforcement, one dimensional fully embedded bar reinforce-
ment (truss elements) were applied with perfect bond between the reinforcement and the
neighboring concrete elements. Strains for the reinforcement are calculated based on the
surrounding concrete elements.

The concrete compressive behaviour was implemented as a bi-linear stress-strain rela-
tionship considering the obtained test results on control specimens. A Hordijk tension
softening model and a total strain fixed crack model was adopted for concrete in tension.
For reinforcing steel, a multi-linear stress-strain relationship in accordance with labora-
tory testing on reference specimens was applied. Further, the strain hardening hypothesis
together with the Von Mises plastic criterion was used.

The loading procedure implemented in the numerical analysis was applied in accordance
with the laboratory tests by making use of a phased analysis. The obtained stresses and
strains were transmitted from one phase to the next. Interface as well as spring elements
provided the vertical boundary conditions at the slab’s ends, allowing for unrestrained
outward movement, while inward movement was restricted. Values of all the model pa-
rameters were taken in accordance to the measured values obtained from material testing.

Figure 3 illustrates the load-displacement curves of slab 1 (continuous reinforcement),
slab 2 (curtailed reinforcement) and slab 3 (reduced thickness) measured during the lab-
oratory testing in comparison with the numerical simulations. Both, the laboratory tests
and numerical simulations showed that the development of tensile membrane action can
indeed significantly increase the load-carrying capacity of a slab strip in accidental situa-
tions when very large displacements occur. Further, the established FE model is able to
predict this increase in the load-carrying capacity due to tensile membrane forces rather
accurately. The load-displacement curves until the rupture of the top reinforcement bars
over the inner supports (Point A, Figure 3) was calculated within a reasonable tolerance
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Property Distribution µ COV
Concrete compressive stress fc LN 36 MPa 0,10
Reinforcement yield stress fy LN 555 MPa 0,03
Reinforcement tensile strength ft LN 605 MPa 0,03
Reinforcement strain at maximum load εu LN 8,3 % 0,15
Young’s modulus of reinforcement Es LN 210 GPa 0,08
Spring constant of horizontal restraints k LN 303 kN/mm 0,25
Reinforcement area As N 1257 mm2 0,02

Table 1: Probabilistic models for the basic variables involved in the uncertainty quantifi-
cation of the investigated concrete slabs

and showed good agreement with the laboratory tests. Further in this contribution, the
established model of the first concrete slab (with continuous reinforcement) will be used
in order to investigate the influence of uncertainties of the most influencing variables with
respect to tensile membrane action on the variability of the load bearing capacity. Conse-
quently, the influence of the tensile membrane action on the value of the reliability index
will be discussed as well as its influence on robustness quantification.

3 Probabilistic models for design parameters

The probabilistic models that are considered for the design parameters in this contri-
bution, are shown in Table 1. The mean values and coefficients of variation (COV)
for the different parameters are based on experimental investigations together with the
suggestions provided in the [6] Probabilistic Model Code from the Joint Committee for
Structural Safety (JCSS, 2001). The variation of the stiffness of the boundary conditions
(represented by a linear spring with spring stiffness k) is based on the non-linear behaviour
observed in the experiments.

4 Sensitivity analysis

Based on the suggested probabilistic models in Table 1 a set of 12 Latin Hypercube
samples (LHS) of the input variables were generated according to the method described
in ([8] Olssen et al., 2003). The Latin Hypercube Sampling procedure significantly reduces
the number of required simulations ‘n’ compared to regular Monte Carlo simulations, by
ensuring that even for a very small number of samples the entire domain of the cumulative
distribution function of the input variables θj is represented, i.e. the Latin Hypercube
Sampling procedure subdivides the entire domain of possible values for each stochastic
variable in ‘n’ (the number of simulations) subsequent areas with equal probability. Within
each area a random value of θj is generated and combined with similarly generated values
of the other input variables. Combining the random samples of each variable θj requires
the composition of a Latin Hypercube and a Cholesky decomposition in order to avoid
spurious correlation ([8] Olssen et al., 2003). A set of 12 samples was found to provide
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Figure 4: Collapse load–ultimate displacement of the different LHS sets for the original
slab system and the damaged slab system

sufficiently accurate results.

A set of 12 FEM analyses were executed using these sets of realizations of the variables.
These FEM analyses were executed using the established FEM model from paragraph 2.3,
both for the situation with and without the central support, i.e. considering the original
and the damaged system. The ultimate load and ultimate displacements obtained through
the FEM analysis for the different LHS sets are shown in Figure 4, together with the result
of the large-scale test set-up of slab 1.

One can already notice the large variability for the load-bearing capacity of the damaged
slab system. This variability can be attributed to the uncertainties related to the basic
variables. The results of the Latin Hypercube simulations can consequently be used to
determine the sensitivity of the output (i.e. the failure load) to variations of each input
variables as proposed by ([9] Yang, 2007). The output of each Latin Hypercube simulation
Yi can be approximated by a linear combination of the k input variables θij(j = 1, . . . , k):

Ŷi = b0 +
k∑

j=1

bj · θij (1)

The constant b0 and the regression coefficient bj can be obtained by the methods of least
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Parameter B∗
u B∗

d

Es 0,04 -0,14
εu 0,17 0,38
fc 0,30 -0,01
ft 0,59 0,51
fy 0,40 0,24
k 0,00 0,07
As 0,46 0,16

Table 2: Standardized regression coefficients for the undamaged (B∗
u) and the damaged

system (B∗
d).

squares. However, these coefficients are dependent on the units in which the variables
are expressed. In order to overcome this problem, the output and the different variables
should be standardized as follows:

θ∗ =
θ − µθ
σθ

(2)

Y ∗ =
Y − µY
σY

(3)

Where µθ and µY are the sample means and σθ and σY are the sample standard deviations.
Consequently, the regression model (1) can be rewritten as follows:

Y ∗
i =

k∑

j=1

b∗j · θ∗ij (4)

The coefficients b∗j are called the standardized regression coefficients. Such coefficients
provide a direct measure of relative importance of the input variables. The larger the
absolute value of b∗j , the more influence the variable θij has, while values of b∗j close to
zero indicate that the associated variable θij has only little influence on the output Yi.
The standardized regression coefficients can be determined from equation (5):

B∗ = (XTX)−1XTY ∗ (5)

With:

B∗ =




b∗1
b∗2
...
b∗k


 X =



θ∗11 · · · θ∗1k
... . . . ...
θ∗n1 · · · θ∗nk


 and Y ∗ =




Y ∗
1

Y ∗
2
...
Y ∗
k


 (6)

Using equations (2)-(6), the standardized regression coefficients for the undamaged and
the damaged system are calculated and represented in Table 2. This table shows how the
importance of the different input parameters changes when the system is altered from the
undamaged configuration consisting of two spans (B∗

u) to a damaged configuration with
only one span (B∗

d).
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It is noted that the standardized regression coefficient of the ultimate reinforcement strain
increases, indicating that the contribution of this parameter to the resistance of the dam-
aged system is more important than it was the case for the undamaged system.

The opposite is valid for the cross-section, yield stress and the tensile strength of the
reinforcement and for the compressive strength of the concrete. Their contribution to the
resistance of the system is less important in case of a damaged system than it was for the
undamaged system. This is especially the case for the concrete compressive strength: it
contributes significantly to the resistance in case of the undamaged system, while it does
not contribute significantly to the resistance of the undamaged system. This is reflected
by the very low (slightly negative) standardized regression coefficient B∗

d . Indeed, failure
of the damaged system occurs in the tensile membrane stage where the entire cross-section
of the slab is subjected to tension. In this state, the concrete is cracked, hence the concrete
compressive strength does not contribute significantly to the load-bearing capacity of this
system.

The stiffness of the horizontal boundary condition (k) and the Young’s modulus of the
reinforcement steel have (almost) no influence on the resistance of the undamaged system.
However, when the accidental situation occurs, the contribution of these parameters to
the load-bearing capacity becomes significant: the stiffness of the horizontal boundary
condition has a positive effect on the resistance of the damaged slab, while the Young’s
modulus of the reinforcement has a negative effect. This means that increasing the stiffness
of the horizontal boundary condition will lead to a higher load-carrying capacity, while
increasing the Young’s modulus of the reinforcement will result in a decrease of the collapse
load.

It should be noted that the formulation of the regression model influences the values of the
standardized regression coefficients. In this contribution a linear combination of the input
variables was adopted (Equation 4). Figure 5 compares the model response according
to Equation 4 with the FEM response (i.e. ultimate load) in standardized space (i.e.
according to Equation 3). The solid line represents the response of an unbiased model. In
case of the undamaged system, the model has a good performance and is nearly unbiased.
However, in case of the damaged system, a larger scatter is observed. Better performance
might be obtained in case a model is adopted where also higher order terms in the input
variables are incorporated.

5 Probabilistic model for the load-bearing capacity of
the investigated slab system

Considering the LHS in combination with the FEM analysis (Figure 4), the stochastic
distribution of the output variable Y can be fitted to a chosen distribution (e.g. normal or
lognormal) and an estimation of the mean µY and coefficient of variation δY or standard
deviation σY can be made according to well-known estimation methods such as the Method
of Moments or the Maximum Likelihood Method ([1]Benjamin & Cornell, 1970). In this
study, a lognormal distribution is assumed for the load-bearing capacity of the reinforced
concrete slab, both in case of the undamaged and the damaged situation (Figure 6). The
mean µY and standard deviation σY 0, 23 can be estimated by (7) and (8) in accordance
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Figure 5: Standardized ultimate load obtained by FEM calculations compared to the
model response for the undamaged and the damaged system

Slab system Distribution µ [kN] COV [-]
Original slab system LN 213 0,05
Damaged slab system LN 198 0,23

Table 3: Probabilistic models for the load-bearing capacity of the original and the dam-
aged slab system

with the Method of Moments.

µY =
1

n

∑

i

Yi (7)

σY =
1

n

∑

i

Y 2
i − µ2

Y (8)

The mean and coefficient of variation (COV) for the resistance of the original slab system
with two spans and of the damaged slab system with one span, are summarized in Table 3.
Table 3 and Figure 6 show again the quite high scatter for the load-bearing capacity of the
damaged slab system, indicated by the large coefficient of variation, while the uncertainty
associated with the load-bearing capacity of the undamaged slab system seems to be
rather low (COV = 0,05).
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Figure 6: PDF of the load-bearing capacity RF

6 Robustness assessment

In this paragraph, the robustness of the slab system under consideration is investigated
through two types of robustness indicators: a deterministic one and a reliability-based
one. In order to do so, one has to assume a distribution for the load that is applied on
the slab. The original slab configuration was designed for a load Qd with a design value
of 90 kN . Considering a reference period of 50 years and assuming a COV of 0,25, this
variable load Q is modeled as a Gumbel distribution with mean value µQ = 45 kN .

6.1 Deterministic robustness quantification

In the offshore industry, a simple measure of structural redundancy is used, based on the
so-called Residual Influence Factor (RIF) ([3] Faber et al., 2006 and [5] ISO19902:2007).
First, the Reserve Strength Ratio (RSR) is defined as follows:

RSR =
RF,c

Qc

(9)

with RF,c the characteristic value of the resistance and Qc the characteristic value of the
design load. Consequently, the RIF is defined by:

RIF =
RSRdamaged

RSRoriginal

(10)
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Slab system RF,c [kN ] Qc [kN ] RSR [−] RIF [−]
Original slab system 196,70 39,60 4,97 0,67Damaged slab system 132,43 3,34

Table 4: Characteristic value for the load-bearing capacity and the load, RSR values and
the RIF value for both slab systems

where RSRoriginal is the RSR value of the intact structure and RSRdamaged is the RSR
value of the damaged structure. The RIF takes values between zero and one, with larger
values indicating larger redundancy.

Considering the characteristics of the probabilistic variables RF and Q as mentioned in
the previous paragraphs, their characteristic value can be calculated. The 98% fractile is
used for the characteristic value of the load variable Qc, while the 5% fractile is used for
the characteristic value of the resistance RF,c. The characteristic values of the resistance
and load are shown in Table 4. These values are consequently used to calculate the
Reserve Strength Ratios (RSRdamaged and RSRintact) and finally the Residual Influence
Factor RIF . All values are summarized in Table 4. Table 4 shows that the RSR values
for both the undamaged and the damaged slab system are quite high, indicating that the
slab system has a high strength reserve with respect to the characteristic load Qc. These
RSR values result in a RIF value of 0,67 for this particular accidental situation. This
value is closer to one than to zero, indicating that the slab is quite redundant with respect
to the removal of the central support. Note that this RIF is independent on the applied
load Qc.

6.2 Reliability-based robustness quantification

A probabilistic measure of robustness is the redundancy index RI, defined by (Fu &
Frangopol 1990):

RI =
Pf,damaged − Pf,intact

Pf,intact
(11)

where Pf,damaged is the probability of failure of the damaged system and Pf,intact is the
probability of failure of the undamaged system. This redundancy index takes values
between infinity, for structures that are not robust, and zero, for structures that are very
robust.

Alternatively, also the redundancy factor βR defined by (Frangopol & Curley 1987) can
be considered:

βR =
βi

βi − βd
(12)

where βi is the reliability index of the intact system and βd is the reliability index of the
damaged system. The redundancy factor takes values between 0 (i.e. βd = −∞), for
structures that are not robust, and infinity (i.e. βd = βi), for very robust structures.

In order to calculate these robustness indices, the reliability index for the intact and the
damaged configuration are calculated according to the simplified limit state equation (13),
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Slab system Reliability
Index β [−]

Failure Prob-
ability Pf [−]

Redundancy
Index RI [−]

Redundancy
factor βR [−]

Original slab system 5,72 5, 3 · 10−9

58,69 7,72Damaged slab system 4,98 3, 2 · 10−7

Table 5: Reliability index, redundancy index and redundancy factor for the original and
the damaged slab system

in combination with the probabilistic models for the load-bearing capacity RF and the
load Q as mentioned in the previous paragraphs.

g(X) = RF −Q (13)

The reliability index for the intact and the damaged system are summarized in Table
5. Consequently, the redundancy factor βR can be calculated, as well as the redundancy
index RI. These factors are also presented in Table 5. The reliability index of the slab
system decreases from 5,72 to 4,98 when the central support is removed. Note that it is
difficult to assess the robustness of this structural system, as both the redundancy index
and the redundancy factor have an infinite range, i.e. respectively between infinity and
zero and between zero and infinity. Nevertheless, it can be concluded that the system
possesses some robustness with respect to the removal of the central support, since the
redundancy index is not extremely high and the redundancy factor differs definitely from
zero.

7 Conclusions

The numerical model in combination with LHS for the design parameters allowed for
the investigation of the structural robustness of a reinforced concrete slab subjected to
membrane action. It was shown that parameter uncertainties have a significant influence
on the ultimate load-bearing capacity of a reinforced concrete slab subjected to large
deformations.

A sensitivity analysis was performed in order to detect the most important variables that
should be addressed during the design of reinforced concrete slabs, especially in case one
want to account for membrane action. This sensitivity analysis revealed that the influence
of the variables is different for the undamaged and the damaged situation: the influence of
some variables becomes significant or more important in the damaged situation (e.g. the
stiffness of the boundary condition, the Young’s modulus of the reinforcement steel and
the ultimate reinforcement strain), while the influence of others decreases or disappears for
the load-carrying capacity of the damaged system (e.g. the concrete compressive stress,
the yield stress and cross-section of the reinforcement,. . . ).

In order to assess the structural robustness of the slab system, a lognormal distribution was
fitted to the data obtained by Latin Hypercube Sampling. Consequently, the structural
robustness was quantified by means of two types of robustness indices: a deterministic one,
based on the characteristic values of the resistance and the load, and a reliability-based

66



12th International Probabilistic Workshop

robustness index, based on the reliability index or probability of failure of the damaged and
intact system. Both robustness indices indicated that the slab system under consideration
possesses some robustness/redundancy with respect to the removal of the central support.
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Abstract. 40 years ago Hasofer and Lind wrote their seminal paper [7] about FORM
where they described an algorithm for finding the beta point. This algorithm, later in
1978 generalized by Rackwitz and Fiessler in [14] to include non-normal random vari-
ables, is known as Hasofer-Lind- Rackwitz-Fiessler (HL-RF) algorithm and till now it is
an important tool for reliability calculations. Here its relation with standard numerical op-
timization is explained. Further a simple method for computing the SORM factor is given
and the connection of FORM/SORM with dimension reduction concepts is explained.

1 The HL-RF algorithm

The original Hasofer-Lind algorithm finds for a limit state function (LSF) g(u) in the
standard normal space a point u∗ such that

|u∗| = min
g(u)=0

|u| = min
g(u)≤0

|u|. (1)

The basic idea was to linearize the LSF at a given point, find the beta/design point for
this linearized LSF and then to proceed iteratively always again linearizing to obtain a
further point.

Writing this as an algorithm, one has:

1. Starting point u1. Define a convergence criterion for stopping.

2. Calculate uk+1 by

uk+1 = |∇g(uk)|−2(∇g(uk)Tuk − g(uk))∇g(uk). (2)

3. If the convergence criterion is fulfilled, stop, elsewhere repeat step 2.

In general, if the curvatures of the LSF are not too large, experience has shown that this
procedure converges to the beta point. But in a number of cases, convergence problems
appeared. So various improvements and modifications of this method were proposed
(see for example [1], [16], [10]). In the next section basics of numerical optimization
are outlined and in the third section the relation of the HL-RF algorithm with these is
explained.

69



12th International Probabilistic Workshop

2 Numerical optimization methods

Deterministic unconstrained minimization methods are usually line search methods ([11],
chap. 3). This means that a sequence xk of points which should converge towards a
minimum of f is calculated iteratively by

xk+1 = xk − αkH−1k ∇f(xk). (3)

Here xk is the present iteration point, ∇f(xk) the gradient,Hk a symmetric and positive
definite matrix and αk the step length. The search direction Hk∇f(xk) is chosen as a
direction in which the target function decreases and αk such that the decrease is sufficient
according to some criterion. Usually no exact line search is made for αk, but only a step
length is taken for a somehow sufficient decrease (inexact line search, see [11], chap. 3.1).
The choice of Hk depends on the available information and storage space; if no second
derivative information is available, steepest descent (which use Hk = In, i.e. the n-
dimensional unity matrix) or conjugate gradient methods are used. If information about
the second derivatives information can be gathered, quasi-Newton methods where Hk is
an approximation of the Hessian or Newton methods where Hk = ∇2f(xk), are utilized.

At the first glance it looks as the optimal choice for the search direction would be −∇f(x),
i.e. the steepest descent method. Unfortunately this method has not optimal convergence
properties ([11], chap. 3.3, p. 49). Its convergence speed is linear and its use is discouraged
in textbooks, since it tends to a zigzag behavior. A method using only gradient informa-
tion but superior to this approach is the method of conjugate gradients ([11], chap. 5.2).
Also more efficient are quasi-Newton methods where the Hessian is reconstructed from
the change in the gradients. Here one avoids the computation of the second derivatives,
but one needs to store the approximate Hessian, an n× n-matrix.

Modified, these procedures are used also for finding constrained extrema. Under some
regularity conditions the extrema of f(x) under g(x) are found under the stationary points
of the Lagrangian function L(x, λ) = f(x) + λg(x), i.e. the points with ∇xL(x, λ) =
0, g(x) = 0. So the minimization algorithms are altered to find these points.

One approach, the SQP (sequential quadratic programming) method replaces in each
iteration step the original problem by a quadratic function whose minimum under the
linearized constraint has to be computed, i.e.:

xTAkx+ bTkx+ c under g(xk) +∇g(xk)T (x− xk) = 0 (4)

This approach gives a direction where the target function f(x) is decreasing, but one has
to ensure that also the original constraint condition g(x) = 0 is not violated too much.
This is achieved by minimizing a so-called merit function M(x, C) in the direction given
by p by adjusting the step length. A merit function depending on a parameter C is a
function whose unconstrained minimum coincides with the constrained minimum of the
target function for sufficiently large values of the parameter µ.

In the augmented Lagrangian approach the constrained optimization problem is replaced
by a series of unconstrained optimization problems. For a given Lagrangian L(x, λ) this
function is replaced by the augmented Lagrangian L(x, λ, µ) = f(x) + λg(x) + µ2g(x)
which is minimized and then the parameters λ and µ are adjusted. For large enough µ
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the unconstrained minima of L(x, λ, µ) are also the minima of the constrained problem
([11], chap. 18.5, p. 542 ff.). For finding the minimum of the augmented Lagrangian any
method for unconstrained optimization can be used.

3 Modified HL-RF algorithm

In 1970 Pshenichnyj [12] (see also [13]) proposed a method for constrained minimization.
He considered the linearizations of the target function f and the constraint function g:

f(x) ≈ f(x0) +∇f(x0)
T (x− x0), g(x) ≈ g(x0) +∇g(x0)

T (x− x0) (5)

To find a solution he added a damping term |x − x0|2/2 to the function f restricting so
the step length and ensuring that a solution exists. This gives as function f ∗(x) to be
minimized under g(x0) +∇g(x0)

T (x− x0) = 0 now

f ∗(x) = f(x0) +∇f(x0)
T (x− x0) + |x− x0|2/2. (6)

If one considers the design point search problem and sets f(u) = |u|2/2, then one has for
the damped function f ∗(u) = |u0|2/2 + uT0 (u− u0) + |u− u0|2/2. But then:

f ∗(u) = |u0|2/2 + uT0 (u− u0) + (u− u0)
T (u− u0)/2

= |u0|2/2 + uT0u− |u0|2 + |u|2/2− uTu0 + |u2
0|/2 = |u|2/2 = f(u). (7)

So in the case of the beta point search the linearized function plus the damping term
is equal to the function itself. The search direction here is found by determining the
minimum of f ∗ under g(uk) +∇g(uk)T (u− uk) = 0. The result is the same as found in
eq.(2). Then as merit function is used M(u, C) = |u|2/2 + C|g(u)| with C > 0 and the
step length adjusted to give a sufficient decrease for it. This method was proposed in [3]
for searching the beta point.

Variants of this method were developed then in [1] and [16]. In these papers the approach
is different, no damping term is added, but the target function is directly |u|2/2 with the
constraint g(u) = 0. In the first paper the merit function is an augmented Lagrangian
M(u, C) = f(u) + λg(u) + C2g(u) and in the second the same used by Pshenichnyj.

All three algorithms have the following form:

1. Starting point u1, a positive value for C and a convergence criterion.

2. For uk calculate the search direction pk as
pk = −uk − λk+1∇g(uk) with λk+1 = |∇g(uk)|−2(g(uk)−∇g(uk)Tuk).

3. Choose a step length |αk| ≤ 1 which gives a sufficient decrease of the merit function
M(u, C).

4. Take as the next point in the iteration uk+1 = uk + αkpk. If necessary, increase C.

5. Set k = k + 1 and return to step 2 if the convergence criterion is not satisfied,
elsewhere stop.

All these three methods can be classified as SQP methods, where in each step Ak is set
equal to the unity matrix In and for all convergence can be shown under some regularity
conditions.
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What is the search direction pk = uk+1 − uk? This can be seen expressing uk+1 with
L(u, λ). The gradient of L(u, λ) is ∇uL(u, λ) = u+ λ∇g(u). This gives:

uk+1 = |∇g(uk)|−2(∇g(uk)T · uk − g(uk))︸ ︷︷ ︸
=−λk+1

∇g(uk) = −λk+1∇g(uk)

uk+1 = uk + (−λk+1∇g(uk)− uk) = uk − (uk + λk+1∇g(uk))
uk+1 = uk −∇uL(uk, λk+1). (8)

The value of λk+1 is derived from the linearization of the Lagrangian at uk so that at
uk+1 its gradient vanishes. So these methods are also steepest descent methods for the
Lagrangian. There are therefore – as already said – some disadvantages in using them. For
starting points far away from the beta point steepest descent procedures may run a long
time through valleys since they use only the local information about the descent direction
and do not try to build more efficient search directions as conjugate gradient or quasi-
Newton methods by varying the search direction. Then the problem of the steepest descent
near the beta point is that the Lagrangian in the tangential space there is approximately
equal to its second order Taylor expansion L(u∗, λ∗) + (u−u∗)T∇2

uL(u
∗, λ∗)(u−u∗) at

the beta point, where the gradient is vanishing, so these methods have in general a slower
convergence and might begin to zigzag. On the other hand these methods seem to be
quite robust and need only one evaluation of the gradient of the LSF in each step.

So in the neighborhood of the beta point methods which try to reconstruct the Hessian
might be a better choice. In [1] it is warned that the approximating matrix for the Hessian
found in SQP methods is not reliable and tends to be become indefinite. This is due to
the fact that the Hessian at the beta point is not necessarily positive definite, it can be
indefinite there. The Hessian is surely positive semi-definite only in tangential space at
the beta point. So reduced Hessian methods, which try to reconstruct only the Hessian
projected into the tangential space, seem to be more appropriate ([11], chap. 18.7, p. 547
ff.). This projected matrix is positive definite if the constrained minimum is regular.
From the reduced Hessian one can compute easily the SORM factor as shown in the
next section. A rudimentary reduced Hessian method was proposed in [5]. It appears
to be difficult to give a general advice which method to use, much depends here on the
specific problem. Approaches as conjugate gradients, quasi-Newton or reduced Hessian
might have better convergence properties near the beta point, but less robustness than
the HL-RF algorithm if the LSF is not smooth enough. All the methods considered here
are variants of the SQP method, since augmented Lagrangian methods seem not to be
efficient for the beta point search ([9]).

4 The SORM Factor

The SORM factor is usually given in the form
∏n−1

i=1 (1− βκi)−1/2. Some authors replace
the minus sign before the term βκi by a plus sign which leads to confusions. To clear
the problem, there are two different definitions for curvature, one for functions and one
for surfaces. Civil engineering textbooks mainly use the first definition that a function
has positive curvature if f ′′(x) > 0 and negative if f ′′(x) < 0. Using this definition for
example for a circle would give curvatures with different signs for the upper and lower
part of it.
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For surfaces S defined by a function g(u) as S = {u; g(u) = 0} it depends on the
orientation of the surface. For a unit vector v in the tangential space of S oriented by
|∇g(u)|−1∇g(u) at the beta point u∗ the curvature κ(v) in the direction of the vector v
is given by (see [15], chap. 12, exercise 12.1):

κ(v) = −|∇g(u∗)|−1vT∇2g(u∗)v. (9)

The surface can be oriented by the normal vector field |∇g(u)|−1∇g(u) or by the field
−|∇g(u)|−1∇g(u). The surface curvature in a direction is said to be positive if it bends
towards the normal vector defining the orientation. It seems to be natural in reliability
contexts to orient the surface by |∇g(u)|−1∇g(u). Then a sphere around the origin with
radius r has constant positive curvature 1/r which is also the usual definition. This gives
then a minus sign in the SORM factor. So one has to be careful with the definition of
curvature.

The form of the SORM factor above is not suitable for computational purposes requiring
an eigenvalue analysis of a symmetric (n− 1)× (n− 1) matrix. A form better suited for
computation was derived in [4]. Consider the case that the beta point has been rotated
into (0, . . . , 0, β), the tangent space at the beta point is spanned by the first n − 1 axis
vectors and by a suitable rotation of the coordinates the main curvature directions are
given by these axis vectors. Then the square of the inverse of the SORM term is:

n−1∏

i=1

(1− βκi) = det(In−1 + βB︸ ︷︷ ︸
=A

) where B = |∇g(u∗)|−1
(
∂2g(u∗)

∂ui∂uj

)

i,j=1,...,n−1
(10)

is the Hessian of g at u∗ with respect to the first (n− 1) variables only . Adding now to
the (n − 1) × (n − 1) matrix A an n-th row and an n-th column with zeros and only in
the diagonal unity gives a matrix Ã

Ã =




0

A
...
0

0 · · · 0 1


 (11)

whose determinant is equal to the determinant of A. We define P as the projection
matrix onto the vector ∇g(u∗) given by P = |∇g(u∗)|−2∇g(u∗)∇g(u∗)T (For properties
of projections used in the following see for example [2], p.124 ff.) In the special coordinate
system here |∇g(u∗)|−1∇g(u∗) = (0, . . . , 0, 1). The matrix In −P is then the projection
matrix on the orthogonal complement of the gradient, the tangential space. One has for
a vector x then that x = Px+ (In−P )x and (Px)T (In−P )x = 0. The matrix Ã can
be then written as

Ã = (In − P )TH̃(In − P ) + P TP = (In − P )H̃(In − P ) + P (12)

with H̃ = In + β|∇g(u∗)|−1∇2g(u). The second equality follows from the property of a
projection matrix Q that QT = Q and QTQ = Q. This gives finally:

n−1∏

i=1

(1− βκi) = det((In −P)H̃(In −P) +P) (13)

This result is invariant under rotations of the coordinates. Therefore no rotation or/and
eigenvalue analysis is needed to calculate the SORM factor.
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5 Dimension Reduction and FORM/SORM

Given many variablesX = (X1, . . . , Xn) describing a system by Y = f(X), can a simpler
structure having much less variables be found without much loss of information about
the system? More formally, for a function Y = (X1, . . . , Xn) of the rv’s X1, . . . , Xn find a
function h : Rn → Rp with p� n such that

Y = f ∗(h(X)) + ε = f ∗(h1(X), . . . , hp(X)) + ε (14)

where the term ε is small in some sense. Methods to find such functions h are called
dimension reduction methods. An overview can be found in [6]. (In [8] dimension reduc-
tion methods were studied the first time in connection with structural reliability but with
another perspective, i.e. to approximate an LSF given only by data points by function
families.)

If h is a linear function, such a structure is found by a projection on a suitable plane
h(X) = PMX where PM is a projection matrix onto a p-dimensional plane M .

If the plane is spanned by p orthonormal vectors v1, . . . ,vp:

f(x) ≈ f ∗(vT1 x, . . . ,v
T
px) + ε (15)

FORM is a linear dimension reduction method. The original LSF g(u) is replaced by the
linearized form

g∗(u) = a0 +
n∑

i=1

aiUi = a0 + a
TU (16)

which is the projection on the vector Y = aTU , g∗(Y ) = a0 + Y, g(u) ≈ g∗(y). This is a
reduction from n to one dimension. In the same way in SORM the limit state function is
replaced by a quadratic form of normal random variables.

Now, the reduction to one dimension is not always possible, so for more complex problems
it seem to be useful to make reductions where p is still small compared with n, but greater
than unity. Such methods are for example SIR (Sliced Inverse Regression) and SAVE
(Sliced Average Variance Estimates) described in [6].

The idea of these methods is that if Y is a function of the vTi X vectors only as in
eq. (15), then the inverse regression, i.e. estimating the X’s from the y’s will afflict only
these variables. Therefore the curve of the inverse regression mean IE(X|y) lies in the
subspace M spanned by the vectors v1, . . . ,vp if Y is a function of vT1X, . . . ,vTpX only.
Since the curve IE(X|y) lies in M , the vectors connecting the points IE(X|yi) for various
values of yi must lie in the plane M . So if we can construct enough such points IE(X|yi)
from their differences IE(X|yi)− IE(X|yj) we can find the vectors which span M .

In SAVE we use estimates about the variation of the conditional mean to find the vectors
spanning M . Since cov(U) = IE(cov(U |y)) + cov(IE(U |y)) (law of total variance) the
matrix IE(cov(U |y)) can be estimated from In−cov(IE(U |y)). We cannot find the values
of cov(IE(U |y)), but we can approximate them by taking slices. This means, we can find
the values IE(U |y ∈ Si) with Si = [a, b] an interval. These IE(U |y ∈ Sh) points lie in the
subspace M too.
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Let P the projection matrix onto M , then

cov(U |y) = In − P + P cov(U |y)P , In − cov(U |y) = P − P cov(U |y)P
In − cov(U |y) = PInP − P cov(U |y)P , In − cov(U |y) = P (In − cov(U |y))P (17)

So the matrix In − cov(U |y) is equal to its projection onto the subspace M . If M is
spanned by the first p unit vectors e1, . . . , ep then this means

In − cov(U |y) =
(
Ip − cov(U1, . . . , Up|y) 0p,n−p

0n−p,p 0n−p,n−p

)
(18)

with 0k,l the zero matrix with k rows and l columns. So the p non-zero eigenvectors of
In − cov(U |y) span M .

We make an estimate S of In − cov(U |y). Then the eigenvalues and eigenvectors of S
will approximate those of In − cov(U |y). Here m is the number of the data, the real line
is partitioned into h slices Si, and mi is the number of data in slice Si. Then an estimate
of S is given by:

Ŝ = m−1
h∑

i=1

mi(In − cov(U |y ∈ Si))2 (19)

Here we take the square of In − cov(U |y) to get non-negative eigenvalues. This matrix
has N − p eigenvalues approximately equal to zero and the eigenvectors for the remaining
p positive eigenvalues span the subspace M .

An example for SAVE:
Given is the three-dimensional random vector (U1, U2, U3) with standard normal distri-
bution and LSF g(u) = 2− u21 − u22. Here FORM/SORM breaks down, since there is no
unique beta point. A sample of 1000 realizations of the random vector is taken.

From this the eigenvectors for SAVE are using eq.(19):

Ŝ =



0.030 −0.725 −0.688
0.061 0.688 −0.723
0.998 −0.021 0.065


 (20)

and the corresponding eigenvalues

(0.033, 0.749, 0.986). (21)

Since the first eigenvalue is approximately zero, the remaining eigenvectors v2 =
(−0.725, 0.688,−0.021) and v3 = (−0.688,−0.723, 0.065) span the subspace M . This
is nearly the correct subspace spanned by the first two unit vectors.

6 Conclusions

There are still some aspects of FORM/SORM as beta point search methods and dimension
reduction problems which have not been researched thoroughly. The computing of the
SORM factor should be done with the result in eq. (13) to avoid problems with the
definition of curvature.
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Abstract.

The estimation of the remaining fatigue life (RFL) is essential to evaluate the remaining
serviceability of a structure subjected to cyclic and/or random loading over its opera-
tional period. Therefore, several fatigue crack growth models (CGM) developed based on
laboratory fatigue tests that can be chosen to predict certain fatigue driven crack prop-
agation. However, due to different sources of uncertainty, the reliability of the chosen
model to predict a certain fatigue crack size in a real engineering structure is question-
able. The aim of this work is to present a reliability-based strategy to assess and compare
the performance of specific fatigue crack growth models applied to engineering structures.
The test data has been obtained from the NASGRO data manual where the test example
is a low-carbon 1005-1012 hot rolled compact tension specimen subjected to a sinusoidal
load with constant amplitude. Two well known fatigue crack growth models with different
complexity were selected to fit the test data set. Uncertainty related to the stress intensity
factor and the number of loading cycles was assigned in the laboratory test conditions to
represent the test condition of a real engineering structure. The obtained results provide
a suitable indicator to evaluate the model quality based on the reliability of the fatigue
crack growth models.

1 Introduction

Fatigue is a localized progressive process in which structural damage accumulates contin-
uously due to the repetitive application of external loading leading to complete fracture
of the structure [8]. Structures under cyclic and/or random operational loading are sus-
ceptible to fatigue failure while the loading may be well below the structural resistance
capacity. Estimating the remaining fatigue life of the structure is a challenging task for
the responsible engineers. Therefore, the performance of these kinds of structures has
to be assessed during the entire service life which in turn requires long-term monitoring
and non-destructive evaluation (NDE). However, constant and long-term monitoring, es-
pecially for large structures, is very expensive and can be troublesome with respect to
data storage and data assessment [7]. Since the actual loading conditions are usually not
monitored through the life of a structure, an approach for reliable prediction about re-
maining fatigue life (RFL) is proposed. The proposed approach integrates several fatigue
crack growth models (CGM) with reliability approach.
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The greatest challenge to predict the remaining fatigue life (RFL) is not only to select
the right fatigue CGM from the existing numerous mathematical models [11, 15, 5, 10,
3] but also to assess the reliability of a specific model for a certain damage scenario.
Generally, the reliability refers to the probability that a system performs successfully
without failure for a certain period of time. Probabilistic modelling is prerequisite for
any prediction in fatigue, because a number of factors, such as, initial crack length,
loading history of environmental and mechanical stress, material properties, geometry of
the structural member, unexpected loading change can influence the monitored data and
has been considered in several mathematical models [10, 17, 16, 13]. Extensive research
has been conducted on probabilistic modeling of fatigue crack growth and reliability based
inspection of structure [9, 7, 18, 6]. However, these studies introduced different fatigue
reliability models (FRM) but largely based on linear elastic fracture mechanics approach
i.e., only considering the Paris-Erdogan [11] model for the inspection of fatigue crack
growth. Since reliability based inspection of a structure depends to a great extent on
the ability of a fatigue model to predict some certain damage scenario, it is therefore
necessary to consider more fatigue CGMs apart from Paris-Erdogan.

Two fatigue crack growth models, the Paris-Erdogan [11] and the Walker models [15] are
considered in the present study. The parameters associated with both fatigue CGMs have
been estimated considering several parameter estimation techniques. Reliability of each
CGM has been assessed based on their ability to predict the RFL of specific elements of a
structure by considering uncertainty in the estimated parameters. A set of experimental
data, available in literature [10, 19], is used to demonstrate the proposed approach. The
obtained results emphasize not only in the selection of crack growth model but also on
the parameter estimation techniques.

2 Methodology

A fatigue crack growth curve (i.e., CGM) is a graphical representation of the stress in-
tensity factor range, ∆K, and crack growth rate, da

dN
, where a = crack length and N =

number of loading cycle. The curve is subdivided into three regions namely: Region I-
describing initiation or early development of the crack, Region II- describing linear and
stable propagation of the crack and Region III- describing the unstable fatigue crack
growth which leads to ultimate failure of the structure [4], see figure 1. The chosen Paris
and Walker models, briefly discussed in section 2.1, are appropriate for region II but the
Walker model is more advanced than the Paris model by means of taking the loading or
stress ratio, R, into account. Though the Paris model is the most conservative model
among all fatigue CGMs, it is still the most applicable model due to its simplicity.

Section 2.2 and 2.3 shortly discuss the parameter estimation and reliability approach
considered in this paper. Parameters of both models have been estimated considering
two methodologies: least square estimation (LSE) and maximum likelihood estimation
(MLE). Reliability of each model has been assessed by estimating their ability to predict
a damage scenario under a particular random loading condition applying an estimated
parameters set in the respective model.

In this study, parameters and other related notations concerning the Paris-Erdogan model
are denoted with subscript ‘p’ and concerning the Walker model with subscript ‘w’.
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Figure 1: Regions in a typical fatigue crack growth curve

2.1 Fatigue crack growth models (CGM)

Paris-Erdogan: The well known Paris’ law, described by Paris and Erdogan(1963), is
the simplest method for predicting fatigue crack propagation and can be represented by
the following relationship [11]:

da

dNp

= Cp ∆Kmp (1)

where a = crack length, Np = number of loading cycles, ∆K = stress intensity factor,
Cp = fatigue coefficient and mp is the slope on the log-log plot of da

dN
versus ∆K. This

model requires the determination of the parameters Cp and mp.

Walker: The drawback of the Paris law, which does not include the stress ratio R, has
been overcome by Walker(1970) and can be written as follows [15]:

da

dNw

= Cw

[
∆K

(1−R)1−γw

]mw

(2)

The significance of this model is that it introduces a third parameter γw beside Cw and
mw. For γw = 1, the Walker model converts to the Paris model. In this case, the stress
ratio has no effect on the crack growth model.

Since both models are only capable to describe data in region II, they can overestimate
the crack propagation rate in region I or underestimate in region III.
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2.2 Parameter estimation

Parameter estimation is the most compelling task for assessing model quality. Based
on studies from researchers in the early 60’s, mainly focused on Paris’ law, it can be
demonstrated that the parameters C and m are material constants but largely influenced
by the initial crack length [14], the stress or loading ratio, R [12], the geometry and the
size of the structural component [2, 1].

The applied methodologies for estimating the parameters influence the outcome. In order
to observe the effect of these estimating methods, two methodologies have been considered:
Least square estimation (LSE) and Maximum Likelihood Estimation (MLE).

Once the parameters are estimated, the number of cycles N to propagate the crack from
any initial crack stage a0 to a certain final crack stage af can be obtained by rearranging
and integrating Eq. (1) and (2), which provides the relation respectively as follows:

Np =
1

Cp σmp

∫ af

ao

1

(
√
aF1)mp

da. (3)

Nw =
1

Cw

(
1−R
σ

)mw
∫ af

ao

1

(
√
aF1)mw

da. (4)

where, σ = stress, F1 = f(a) = compliance function for a certain geometry and boundary
condition.

2.3 Reliability analysis

In order to compare the results related to several numerical fatigue CGMs, an approach
to quantify the quality of a fatigue CGM was developed based on its ability to predict
the fatigue crack size measured in the physical model after considering the same number
of cycles in both numerical and physical models.

Because of different sources of uncertainty, a direct comparison between the outputs of
the physical and numerical models was not possible. Therefore, a probabilistic quality
measure based on reliability principles was developed. In general, a fatigue model is
written as follows

da

dN
= f(θ ∼ Θ) (5)

dN =
da

f({θ} ∼ {Θ}) (6)

where {θ} refers to the set of input parameters based on a chosen fatigue model. A set
of probability density functions {Θ} was assigned to the uncertainty of the inputs. Based
on the Eq. (5) and (6), a number of cycle dN = Ni+1 −Ni is required to increase a crack
size with a certain size da = ai+1 − ai, where i = 1, 2....
As a result, it is possible to write
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Ni+1 = Ni +

ai+1∫

ai

da

f({θ} ∼ {Θ}) (7)

Because of the influence of the uncertainty of the inputs {θ}, the number of cycles Ni at a
crack size ai has a probability distribution function which is based on the chosen fatigue
model. Accordingly, the mean value N̄i and the standard error of the mean σN̄i

can be
obtained at any crack size ai.

Let’s assume a crack length af has been measured at time te in a studied physical model
where the expected loading cycle is Nf±∆Nf . Now, the quality QM of the chosen fatigue
model M can be assessed by the probability of how close the calculated number of cycles
N̄i for model M is to the expected loading cycle Nf , for the same crack length af . This
can be expressed as follows

QM = P (N̄i = Nf |M,∆Nf , af ) (8)

In ideal case, if N̄i = Nf , the quality of the model M is QM = 1. If N̄i >> Nf or
N̄i << Nf , the quality of the model M is QM ≈ 0. In the latter case, the chosen model
M is not suitable to represent the measured data. This means the modelM is not reliable.

For the comparison among several numerical fatigue models at a specific loading cycle
Nf ± ∆Nf , the relationships between crack length ai and model quality QM , for all
considered models were plotted and compared in section 4. In the current study, the best
fatigue model is considered as the one, which gives the highest value for QM for a crack
size af where 1 ≥ QM ≥ 0 . For example, if 1 ≥ QM1(af ) > QM2(af ) ≥ 0, then model M1

is better than the model M2. If QM1(af ) = QM2(af ) ≥ 0, then the less complex model
associated with less uncertainty should be chosen.

3 Application example

To illustrate the approach, experimental data has been obtained from the NASGRO data
manual [10, 19] where the test example is a low-carbon 1005-1012 hot rolled compact
tension test specimen subjected to a sinusoidal load with constant amplitude, see figure 2.

The general formula that describes the stress intensity factor is as follows [4]:

∆K = σ
√
a F1

( a
W

)
(9)

where, σ = stress caused by the applied load P ahead of the crack tip, a = crack length,
W = width of the plate.

The compliance function to compute the crack length in the CT specimen has the
form [19]:

F1

( a
W

)
= 29.6− 185.5

( a
W

)
+ 655.7

( a
W

)2

− 1017
( a
W

)3

+ 638.9
( a
W

)4

(10)

Incorporating Eq. (9) into Eqs. (3) and (4), one can get the number of loading cycle for
a given crack length according to the respective model.
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Figure 2: Typical compact tension test specimen for fracture test

4 Results

Table 1 summarizes the parameters estimated from both Paris and Walker models accord-
ing to least square estimation(LSE) and maximum likelihood estimation(MLE). Parame-
ters m and C were considered as respectively normally and log-normally distributed. In
the LSE method, the coefficients of variation (COV) for log(C), m were chosen as 0.01.
The MLE method automatically detects the covariance between the parameters. For both
methods, coefficients of variation (CoV) for ∆K and R were considered as 0.1. In the
current study, the parameter γw is was chosen equal to 0.

Paris Walker
Parameters LSE MLE LSE MLE

C 2.16E-16 2.25E-16 1.40E-16 1.49E-16
m 3.968 3.96 3.968 3.96

Table 1: Estimated parameters with LSE and MLE
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Figure 3: Likelihood values estimated by MLE: Paris(left) and Walker(right)
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The parameters obtained from the methodologies for a single model are very close to each
other. In general, m is similar for all models but the value of C is smaller in the Walker
model than for the Paris model due to the effect of the stress ratio R. Fig. 3 shows the
likelihood of the parameters for both models and the best log(C) and m combination
giving the highest likelihood is marked. Fatigue crack growth rate curves have been
plotted by using the estimated parameters and also by using the parameters obtained
from the NASGRO data manual [10, 19], in Fig. 4 and Fig. 5.

10
3

10
−4

10
−3

10
−2

∆K [MPa.sqrt(mm)]

d
a

d
N
[m

m
/
cy
cl
e]

 

 

Parisref
Walkerref
ParisLSE
WalkerLSE
ParisMLE
WalkerMLE
experiment

10
3

10
−4

10
−3

10
−2

∆K [MPa.sqrt(mm)]

d
a

d
N
[m

m
/
cy
cl
e]

 

 

Parisref
Walkerref
ParisLSE
WalkerLSE
ParisMLE
WalkerMLE
experiment

Figure 4: Fatigue crack growth rate curve
with estimated C and m values
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increasing crack length

Fig. 6 shows an overview about the reliability of each model under a certain crack size
or loading condition. The uncertainties in loading cycles, N , was considered as normally
distributed with COV= 0.3. At a crack length of 32 mm which occurs after 1.2 × 105

load cycles, the reliability of the Paris model is higher if the parameters, C and m, were
estimated by LSE and the reliability of the Walker model is higher if the parameters were
estimated by MLE, in Fig 6c and Fig 6i respectively. Similar outcome is also observed at
a higher crack length of 50 mm which occurs after 2 × 105 load cycle, Fig 6f and Fig 6l.
Reliability of a model is thus depends not only in the observed crack length after a loading
cycle but also on the parameter estimation technique.

5 Conclusion and outlook

A reliability based model quality assessment of several fatigue CGM to predict a certain
damage scenario was presented in this paper. The methodology considers uncertainty
associated with the parameters and takes into account the influences of parameter esti-
mation techniques. The proposed framework was verified for the quality assessment of
a fatigue CGM. However, the validation based real structural measurements is still nec-
essary. As both the Paris and the Walker models represent the crack growth in region
II, models capable of describing the region I and region III will be considered in further
studies.
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(g) loading cycle for 32 mm crack
length(MLE)
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Figure 6: Reliability of the models, based on the estimated parameters using LSE and
MLE, under a certain loading or damaged condition of the structure84
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Abstract. Several methods, applicable in frequency or time domain, are available for
the determination of damping ratios from measurements using vibration-based methods.
Due to unavoidable measurement uncertainties, a significant variation of the estimated
damping ratios can be observed. This paper discusses a methodology to quantify the
uncertainty in experimentally determined damping parameters due to a specific measure-
ment uncertainty.
In a first step, data from simulated experiments under impulse excitations was used. The
measurement uncertainty due to ambient vibration was considered as a Gaussian white
noise signal added to the computed acceleration time history. Damping ratios were esti-
mated from the noisy time history of several simulated tests by the amplitude decay of
a free-vibration in order to estimate their initial values. The determined damping ratios
were subsequently applied as prior knowledge for a Bayesian model updating approach.
An objective function based on the acceleration signal energy was used to compute the
posterior distribution density function of the damping ratio. The described procedure
was applied to a simple multi degrees of freedom system. This work concludes that the
damping results taking into account the uncertainty of measured values leads to better
estimates of damping values.

1 Introduction

Designing a civil engineering structure under dynamic excitation requires sufficient in-
formation about the dynamic properties of the structure, such as stiffness, mass and
especially in resonance damping properties. Damping is caused by the irreversible con-
version of mechanical potential or kinetic energy into other forms of energy, usually heat.
Damping sources can be divided into internal and external damping depending on the
definition of the system boundaries [4]. Furthermore, a classification in material, joints
and radiating damping is common according to the mechanisms of energy dissipation.
Damping or the dissipation of mechanical energy into heat is usually caused by internal
or external friction mechanisms. These mechanisms can occur in the case of external
damping, for example by moving of a structure through a surrounding medium and in the
case of internal damping friction due to minimal relative movements in joints or reversible
time-dependent atomic rearrangements which are caused for instance by dislocation move
in the crystal lattice in the case of material damping. Since initial calculations can provide
an idea about stiffness and mass of the structure, natural frequencies and mode shapes
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are predictable. In comparison to a structure’s stiffness and mass the damping proper-
ties are not predictable in the same way. Up to now damping is taken into account by
using properties from known similar structures or by determination of modal damping
values from experimental tests [6], [3]. The inclusion of damping in numerical simulations
mostly relies on the assumption of a proportional viscous damping model [1], introduced
by assembling the damping matrix proportional to the mass and stiffness matrices. Many
studies indicated that the uncertainty of damping ratios is significant in comparison to
the uncertainty of natural frequencies and mode shapes e.g. [13], [11], [10], [5], etc.

The aim of this paper is to provide information about the damping ratio of each mode
that should be selected out of the variation range and used in further calculations. For
this purpose, uncertainty quantification by means of a Bayesian framework is used. The
basic concepts of Bayesian methods and their application in structural dynamics and civil
engineering can be found in [14]. [2] studied the relationship between the data quantity
and the uncertainty of modal parameters including small damping ratios of well-separated
modes. A Bayesian approach was applied to develop a close-form analytical formula for
the accuracy of the modal parameters if sufficient ambient vibration data was used. [12]
applied a Bayesian modeling framework to jointly detect and estimate low-amplitude and
strongly overlapping resonances in noisy signals. [7] applied a Bayesian framework to a
structural health monitoring benchmark in order to obtain the modal parameters and
their uncertainty for output-only modal identification. The aim of this work is to present
an approach based on Bayesian framework in order to study the influence of the considered
uncertainty on selecting reliable modal damping ratios for further investigations.

2 Method

The proposed method is based on obtaining the initial values of the damping ratio of each
mode separately using the amplitude decay functions. The obtained damping ratios were
considered as prior knowledge that had to be updated by a Bayesian updating approach
using a numerical model GM . A specific objective function for the model updating ap-
proach was used. The objective function is based on the cumulative signal energy d of
the response time history ẍ, eq. (1). The time signal started at time t0 and ended at time
te. In this study, a constant time step dt has been used, therefore, it was omitted.

d = dt

te∑

i=t0

ẍ2(i) (1)

2.1 Model

A numerical model should be developed using a sufficient number of degrees of freedom
(DOF) to obtain all desired modes. The model was used to simulate the modal test and to
obtain the dynamic response of the studied structure. Since estimating the damping ratios
requires a free vibration dynamic test, the response of the structure due to an impulse
force was computed. There are several numerical methods to compute the structural
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response under dynamic forces. In this work, the Newmark Beta method (constant average
acceleration) was applied as a numerical method to solve the equations of motion eq.(2).

[M ][ẍ] + [C][ẋ] + [K][x] = [F (t)] (2)

where [M ], [C] and [K] are the mass, the damping and the stiffness matrix of the studied
structure respectively. [ẍ], [ẋ] and [ẋ] are the acceleration, the velocity and the displace-
ment response of the studied structure respectively. [F (t)] refers to the applied excitation.

2.2 Uncertainty

In order to consider uncertainty, a white noise δ ∼ N (0, σ2
δ ) was generated and added to

the computed virtual experiments output ẍ(t), eq.(3). After that, the noisy measurements
ẍN(t) were used to update the numerical model GM . The value of the standard deviation
σδ of the considered noise depends on the intensity of the ambient vibration coming from
surrounding environment.

ẍN(t) = ẍ(t) + δ (3)

2.3 Vibration decay testing

In a prior step damping ratios were roughly determined with the help of the amplitude
decay of free vibration tests. The procedure was directly applied to the measured time
signal and assumes that the measured responses only contain the contribution of one mode
[9]. To fullfil this assumption the structure has to be lightly damped and the modes have
to be well seperated.
Both, a continous excitation which is suddenly switched off or impulse forces can be used
to generate free vibrations. The measured data, especialy in the case of impulse loads,
were further processed by applying a bandpass filter to isolate the contribution of a single
mode. Then the part of the signal which contained the decaying of the amplitudes was
extracted. The instances and the amplitudes of the maximum and minimum values of
the processed signal were detected and an exponential fit through the peaks using least
squares approximation was calculated.

ẍ(t) = Aeλt (4)

After detecting the frequency f of the filtered signal, the logarithmic decrement Λ was
obtained. For the low damping properties the damping ratio was computed by equation

ζ =
(−1) · λ

2πf
=

Λ

2π
(5)

The strategy has been implemented by using the software package LabView, a graphical
programming platform for acquisition and analyzing of measured data [8]. In figure 1 the
exponentional fit of the filtered time history data is shown.

89



12th International Probabilistic Workshop

Figure 1: Computed exponentional fit on filtered data

2.4 Model updating

In order to quantify the uncertainty of the modal damping ratios, a Bayesian probabilistic
model updating was applied. The approach is based on the principles of conditional
probability. The application of this approach required defining a prior information about
the inputs p({θ}) and the likelihood function p({d̄}|{θ}) which was estimated based on
the normal distribution function, eq.(6). Computing the posterior probability density
functions of the inputs p({θ}|{d̄}) is accomplished using eq.(7)

L({d̄}|{θ}) ≡
Nd∏

l=1

p(d̄l|{θ}) =

Nd∏

l=1

exp[−σ−2α,l (d̄l − dl)2] (6)

p({θ}|{d̄}) ∝ p({d̄}|{θ})p({θ}) (7)

where Nd refers to the number of outputs. l = 1, 2...Nd. The standard deviation σα com-
bines all types of uncertainty that were considered. A latin hypercube sampling method
was applied to generate n samples from the prior probability density functions. The re-
sulting posteriors were normalized by the constant c =

∑n
i=1(p({d̄}|{θ})p({θ})) in order

to have the area under the probability density function equal to 1. The updating proce-
dure was repeated several times m in order to illustrate the influence of the considered
uncertainty on the updated damping values. Finally, the mean of the estimated values
and the standard deviation of the updated damping ratios were computed as follows:

µζk =

∑m
j=1

∑n
i=1 ζj,i × p({θ}i|{d̄})

m
(8)

σζk =

∑m
j=1

∑n
i=1[(ζj,i − µζk)2 × p({θ}i|{d̄})]0.5

m
(9)
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3 Application

3.1 Frame structure

A three degree of freedom (DOF) frame , figure 2, is used to illustrate the influence of the
considered uncertainty types on the damping ratio. In this example a stiffness-damping-
lumped mass model GM was developed considering the stiffness {θ1, θ2, θ3} = {k1, k2, k3},
the masses {θ4, θ5, θ6} = {m1,m2,m3} and the damping ratios {θ7, θ8 θ9} = {ζ1, ζ2, ζ3}.
Three modal dynamic tests were simulated. For the first simulated test, the impulse was
applied at the top x1. In second test the impulse was applied at the middle x2 and for
the third at the bottom x3. As a result, 9 outputs were computed and used to update 9
inputs.

Different durations of impulses F (t) were chosen in order to obtain different excited ranges
of frequencies. An example is shown in figure 3 (a) and (b). The true values of the input
parameters {θ∗} were chosen as in table 1. As a result, the true natural frequencies of
the studied frame are [fn1, fn2, fn3] = [5.27, 11.36, 16.82] Hz.Therefore, the time step was
chosen as dt = 0.002s in order to obtain all 3 modes of the structure and to ensure a robust
numerical solution. The acquisition time was chosen as 10s to gain sufficient information
related to the influence of the damping on the structural response.An example of the
resulting acceleration time histories ẍ(t) without noise at each DOF are shown in figure
3 (c) and (d). In order to obtain the initial values of the damping ratios {ζ1, ζ2, ζ3}, the
vibration decay testing method explained before was applied on the acceleration time
histories ẍ(t) which obtained by performing the transient analysis.

A Latin hypercube sampling method was used to generate 500 samples from the prior
probability density functions defined in 2.2. The structural response ẍ(t) at each degree
of freedom and for each excitation was computed for each sample. The cumulative signal
energy values d of the acceleration time histories ẍ(t) were calculated and used as an
objective function to obtain the posterior probability density function P ({θ}|d̄) of the
damping ratios. d̄ refers to the signal energy obtained from measured acceleration time
history. In this work, virtual experiments were generated by solving the problem using
the assumed real values {θ∗}.

Table 1: True values of the studied input parameters
θ∗1 = θ∗2 = θ∗3 = θ∗4 = θ∗5 = θ∗6 = θ∗7 = θ∗8 = θ∗9 =
k1
[N/m]

k2
[N/m]

k3
[N/m]

m1

[kg]
m2

[kg]
m3

[kg] ζ1% ζ2% ζ3%

{θ∗} 1616000 3168000 4704000 507.5 757.5 1000 1.7 3.1 1.1
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Figure 2: Three degree of freedom frame structure excited by an impulse force F (t) at x1
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Figure 3: Time series and Fourier transforms of impulse forces used to simulate the modal
tests
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3.1.1 Free vibration decay results

The damping ratios determined using the decay of free vibration amplitudes explained
in section 2.3 are shown in table 2. The obtained results vary for the applied different
duration, location and strength of excitation, noise and sensor positions. This variation
can be caused by coupling of the modes due to close spacing and elevated damping ratios.

Table 2: Damping ratios obtained from vibrant decrement decay
Mode min damping ratio [%] max damping ratio [%]

1 1.63 1.83
2 2.38 3.11
3 0.97 1.18

3.1.2 White noise

Two white noise levels were studied: δ ∼ N (0, 0.012) and δ ∼ N (0, 0.12) [m/s2]. In this
case, the total uncertainty is given as σ2

α = σ2
d|δ + σ2

d|ζ . σd|ζ refers to the variation of the
output d due to the uncertainty of the damping ratios {ζ}. σ2

d|δ refers to the variation
of the output d due to considered white noise. It is important to mention that while the
updating procedure was applied, a random white noise was generated and added to the
model output each time the model was solved. Table 3 shows the statistical properties of
the updated damping ratios using the given experiments d̄. Figure 4 shows the variation
of the posterior density functions and their means of the updated damping ratios if the
updating procedure was repeated 10 times.

Table 3: The updated damping ratios including white noise, the uncertainty of the other
inputs were not considered

δ ∼ N (0, 0.012) δ ∼ N (0, 0.12)
θ7 = θ8 = θ9 = θ7 = θ8 = θ9 =
ζ1% ζ2% ζ3% ζ1% ζ2% ζ3%

{θ∗} 1.8 3.1 1.1 1.8 3.1 1.1
{µθ} 1.78 3.13 1.1 1.78 3.13 1.1
{σθ} 0.009 0.017 0.003 0.04 0.07 0.012
COV 0.005 0.006 0.002 0.019 0.024 0.011
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Figure 4: The influence of the white noise δ ∼ N (0, 0.12) on the updated damping ratios
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4 Conclusion

An initial objective of the study was to identify a specific value of a modal damping
ratio that should be used later in further calculations. As expected, the applied Bayesian
framework helped to quantify the uncertainty of the damping ratios. The results of this
study indicate that using the signal energy as an objective function provides valuable
information to update the uncertainty of the damping ratios. Moreover, the results show
that choosing the estimated mean values obtained from the posterior density function for
further calculation is reasonable. This is because the chosen value is associated with the
maximum value of the estimated posterior density function.

It is visible that the considered uncertainty influences the modal damping ratios with
different quantity. The posterior density function of ζ3 is more robust than the one of
the other damping ratios in all studied cases. An explanation of this observation requires
further investigation. Moreover, it is important to study the relationship between the
chosen excitation and the uncertainty of damping ratios if different excitation properties
(amplitude, location, frequency range, type) will be used to estimate the damping ratios.

The future step is to consider other types of uncertainty and to apply the approach to
physical models including real structures where the modes are not well-separated.
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Analysis for foundations of electricity pylons

Glowienka S., Fischer A.

HOCHTIEF Engineering GmbH

Abstract. The supply of energy is an important concern of modern societies. The
electricity which is produced by power plants is transported mainly by cables on electricity
pylons. These structures therefore play a critical role for the electrical supply. Due to
the failure of pylons caused by extreme wind loads or ice rain, these loads have been
raised in the last years to avoid damage of the structure and subsequently many pylons
need to be redesigned and fastened. Beside the carrying capacity of the pylon itself, the
foundation has to be analysed. To check the stability of the tower and the foundation,
semi probabilistic or probabilistic design methods are allowed. The paper shows the result
of the probabilistic design of a typical foundation type build in former times as a concrete
structure without any reinforcement.

1 Introduction

For the design of electrical pylons and its foundation semi probabilistic and probabilistic
methods are allowed in Germany [2, 7]. While semi probabilistic methods are mostly used
for the design of new structures, the probabilistic approach allows using capacities in the
design considering the specific location conditions of the pylon for existing structures.
This is important, as the fastening of existing pylons is difficult to execute and the pylon
cannot be used during the construction time, which leads to high economical effort. In
some cases the application of probabilistic methods in the redesign of existing pylons can
avoid these costs. Many of the existing pylons are based on 4 single foundations (stepped
foundations) made of unreinforced concrete (see picture 1).

Picture 1: Section of pylon with step foundation
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Due to the increase of the wind velocity higher tensile loads need to be considered in the
design for the foundations (also for existing pylons). Even though the pylon itself has to
be fastened in many cases to fulfill the reliability required by the code [7], this is not the
topic of this paper. In addition, the foundation of the pylon has to be checked.

In the following the result of the probabilistic design of a typical foundation type made
of concrete without any reinforcement will be analyzed. The main focus will be set on
the outer bearing capacity of existing foundations and the design for tensile loads which
governs the design in most cases, especially for existing foundations. For the assessment
of the inner bearing capacity and the connection between concrete foundation and the
steel pylon further investigations are necessary.

2 System

Picture 2 shows the geometry of the foundation which is analysed in the following. Note
that it is designed and build without any reinforcement. The steel profile is embedded
directly in the concrete.

Picture 2: Geometry of the step foundation

In some cases the anchorage in the concrete is provided by additional steel profile pieces
which are revited to the steel profile of the pylon (picture 3). To determine the carrying
capacity of the anchorage (pull out resistance of the steel profile from the concrete) ad-
ditional test are necessary and are conducted at present. This inner carrying capacity of
the foundation will therefore, not be analysed in the following.

In case of wind loads, the pylon is subjected to bending moments leading the tensile forces
in at least one foundation. For the stability of the pylon the self weight of the pylon, the
concrete foundation embedded in the soil has to be higher than the uplifting loads due
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Picture 3: Anchorage

to wind. Compression forces are transferred to the soils by the foundation. However
the design of this load case does not lead to problems in most cases even for existing
foundations. The same holds for the design against horizontal forces due to the wind.

3 Design assumptions

The design for compression load normally does not govern the design and will not be
analysed. Beside the self weight of the steel structure and the self weight of the concrete
foundation (volume VF ) an earth body activated in case of tension load (P ) is considered
for the pullout resistance (see picture 4). The earth body (volume VS) is supported on
the foundation.

The geometry and the weight of the earth body depend on the soil properties, the com-
paction of the backfill as well as on the geometry and the construction of the foundation
itself. It is assumed that the earth body is a truncated pyramid or cone. The design
approach has been estimated based on actual size test conducted in the past [1].

It was found that for the pull out resistance of the foundation, parameters as density of
the soil (γs), friction angle for tension load (β) and the self weight of the foundation are
the most important ones. Picture 4 gives information about the design model.

The tension load of the foundation is mainly provided by wind on the steel tower and
the cables suspended on it. The dominating parameter for the wind load is the gust
wind speed, which is controlled by the location of the pylon. The wind direction is also
important for the internal forces inside the construction. For the example, which will
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Picture 4: Design assumptions

be analysed in the following a sandy soil (loose compacted) according to [2] is assumed
(β = 17.5, γS = 18KN/m3). The pylon is located at “wind area 1” according to [7] with
a characteristic gust wind speed of 21.4m/s.

4 Deterministic design

For the deterministic design of electrical pylons and its foundation code DIN 50341 [2] is
used in Germany. For the design of the foundation the code provides a priory values for
the soil parameters in accordance of foundation type and the soil conditions. Beside the
allowable compression of the soil, the load eccentricity (in case compression), the slide
resistance and the pull out resistance have to be checked.

For the design check of existing foundations the latter is decisive in most cases. The
minimum safety margin for the design is 1.5, which is a global safety factor according to
the code [2]. This factor can be reduced, according to the location of the pylon respectively
the risk in case of failure. For our example the pylon is located afield. The acceptable
reliability level is Z3 and thus a reduction of the allowable safety margin by a factor of
0.9 is permitted according to [7]. The characteristic value of the pullout resistance is
calculated according to [2]:

Rk = GS(γs, β, t) +GF (γc, V c) = 504kN

The effect on the pylon needs to be calculated for different wind directions. The resulting
wind load on the foundation is reduced by the self weight of the tower. The characteristic
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value of the effect is:

Ek = Wk −Gk = 488 − 54 = 394kN

The provided safety margin of the pylon foundation is:

µ = Rk/Ek = 504/394 = 1.28 < 0.9 · 1.5 = 1.35

The deterministic design does not fulfill the code requirements.

5 Probabilistic design

The probabilistic design is conducted for a reference period of one year [7], that means the
wind parameter have to be defined according to this. The limit values for the reliability
β1,sys can be extracted from [7] and are shown in table 1.

Reliability level Z required β1,sys
1 4.3
2 3.8
3 3.3
4 3.0
5 2.6

Table 1: limit values for the reliability β1,sys according to [2]

The design model must consider the variability of the soil parameter, the geometry of the
foundation and its density, but also the scatter of the wind load respectively the wind speed
and the geometry of the tower resulting in different wind pressures on the construction.
Additionally uncertainties ΘE for the modelling of the effect and the resistance ΘR have
to be considered. The latter is estimated based on full-scale tests [1, 5]. The friction angle
of the soil in case of tensile load can be described by the friction angle of the soil φ.

Z = ΘR ·R(γs, γc, φ, t, b) − ΘE ·W (v, a) + ΘE ·G

For a realistic estimation of the extreme wind load a Weibull distribution is used, as
in general the wind load converges to a maximum value. The parameters for the wind
model can be extracted from [7]. According to this code, the ratio between mean and
characteristic values (98% fractile) can be assumed to 1.4. The value “a” is a constant
factor for the transmission of the wind pressure to the internal force.

The probabilistic modelling is summarized in table 2. Values for the scatter are defined
according to [5, 3, 4]. Variations of the aerodynamic factor cp are included in the scatter
of the gust wind speed v.
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Parameter Distribution Xk/mx Vx
Self weight of the tower G N 1 0.05
Wind speed v (gust) 1 W 1.4 0.16
Model uncertainty ΘF N 1.0 0.025
Density of the soil γS N 1.0 0.05
Density of the concrete γC N 1.0 0.05
Friction angle of the soil φ 2 N 1.0 0.09
Model uncertainty ΘR LN 0.95 0.10
Foundation width b N 1.0 0.03
Foundation depth t 3 N 1.0 0.03
1 Parameter to describe the Weibull distribution τ = 0, 06

2 including the uncertainty of the parameter estimation
3 Definition according to Picture 4

Table 2: Probabilistic model
The probability of failure is calculated based on SORM using COMREL. The resulting
β1,sys-value is estimated as:

β1,sys = 3.40 > 3.30

The probabilistic design fulfils the code requirements. The sensitivity factors inform
about a high correlation of the wind speed and the probability of failure (α = 0.9). On
the resistance site the model uncertainty is dominating (α = −0.3).

6 Conclusion

The probabilistic design approach allows using capacities in the design, especially for
existing structures. Whereas the deterministic design approach does not fulfil the re-
quirements according to the code, the probabilistic design provides a sufficient margin of
safety for the analysed structure. Thus the probabilistic design approach can be used to
avoid expensive rehabilitation measures of existing foundations in some cases.
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1 Introduction

Appropriate safety formats for the analysis of civil engineering structures have been in-
vestigated in numerous previous studies. Amongst others Schlune et al. (2011), Allaix et
al. (2013), Cervenka (2013) and Sykora et al. (2013a) proposed approaches to reliability
analysis of concrete structures; Byfield & Nethercot (1998) and Helmerich et al. (2007)
were focused on steel structures and Dithinde et al. (2011) discussed reliability of pile
foundations. It was indicated that structural resistances can be predicted by appropriate
modelling of material properties, geometric parameters and uncertainties associated
with a model under consideration. The effect of variability of materials and geometry is
relatively well understood and was extensively addressed by the aforementioned studies.
However, better description of model uncertainties is desired.

It is widely recognised that uncertainties in resistance models and also in load effects play
a significant role in the reliability analysis of structures. Consequently they affect mate-
rial and action models applied in engineering practice such as those based on the partial
factor method, EN 1990:2002. Existing knowledge concerning model uncertainties and
their characteristics seems to be mostly based on intuitive judgements and to suffer from
imprecise definitions and lack of experimental data. Test campaigns are mostly focused
on verifications of a particular model for a specified material and failure mode under as-
sumptions that may be incompatible with other studies. This often leads to discrepancies
in description of the uncertainties related to a particular theoretical model. Moreover, as
a full overview of test parameters and conditions is often missing, a subsequent identifi-
cation of causes of the differences may be impossible. That is why a general methodology
for assessment and reporting on model uncertainties seems to be urgently needed.
The present paper attempts to improve definitions of model uncertainties, propose a gen-
eral methodology for their quantification by comparing experimental and model results,
and suggest their treatment in practical applications. More specifically, the study is fo-
cused on:

• Uncertainties in resistance (physical, structural or statistical) models – hereafter
“theoretical models”,

• Ultimate limit states; recognising serviceability limit states equally important and
possibly associated with significant

economic consequences, but being more complex and requiring a separate study.
Implications of model uncertainty for new and existing structures are explored. The
present study is a sub-stantial extension of the recent contribution by Holicky et al.
(2013).
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2 Model uncertainty

2.1 General concept

Model uncertainties can be related to:

• Resistance models (based on simplified relationships or complex numerical models),

• Models for action effects (assessment of load effects and their combinations).

In this study uncertainties in resistance models are addressed only. However, principles
provided here form a basis for treatment of uncertainties in load effects as well.
ISO/DIS 2394:2014 – Committee approved revision of ISO 2394:1998 – defines the model
uncertainty as a basic variable related to the accuracy of physical or statistical models.
Consistently, JCSS (2001a) indicates the model uncertainty be generally a random variable
accounting for effects neglected in the models and simplifications in the mathematical
relations.
Obviously the model uncertainty should be associated with a computational model under
consideration. As a rule the theoretical model is incomplete and inexact due to lack
of knowledge or deliberate simplifications of the model accepted for the convenience of
users. According to ISO/DIS 2394:2014 the difference between the model and real value
can be then expressed by one or several random variables – model uncertainties. As far as
possible their statistical properties shall be derived from experiments, observations and
from calculations using more accurate models. The model uncertainties are treated as
random variables. In principle the approach is the same as for other basic variables such
as material properties or action effects. Mean values of model uncertainties should be
determined in such a way that, on average, the theoretical model correctly predicts test
results.
In principle the distinction between the following cases can be made:

• Modelling of a physical process is possible; in such cases model uncertainty has
commonly a low to medium effect on structural reliability and is treated as situation
1 or 2 defined in Section 3.1,

• Modelling of a physical process is impossible or difficult; in such cases model uncer-
tainty often dominates structural reliability and is treated as situation 3 (Section
3.1), recognizing a strong need to quantify and include model uncertainty explicitly
in the reliability analysis.

Examples of the former case include bending of ordinary-seized reinforced concrete beams
or verifications of steel members without local instabilities. The latter cases can be repre-
sented by shear of concrete members analyzed by simplified design formulas, verifications
of steel members with local instabilities including cold formed steel profiles, or resis-
tance of geotechnical structures. Typically, the latter cases can be identified by the lack
of consensus amongst experts, alternative models used in research studies and practical
applications, and different levels of approximation introduced in codes of practice.

106



12th International Probabilistic Workshop

2.2 Contributing factors

Typically the model uncertainty is obtained from comparisons of physical tests and
model results. Real structural conditions not covered by tests should be taken into
account if needed. A general concept of model uncertainty is indicated in Figure 1. The
significance of factors affecting test and model results, and real structural conditions
depends substantially on an analyzed structural member and failure mode.

Treatment of the test uncertainty was proposed by Sykora et al. (2014). It appears
that unbiased test results with coefficient of variation around 0.05 can be assumed for
reinforced concrete members. Moreover, the test uncertainty was proved to be of low
significance and possible negligible for the cases with higher coefficients of variation of
model uncertainty (say, greater than 0.1).
It is emphasized that in many cases, it is more important to quantify the differences
between structure and specimens rather than to investigate the test uncertainty. Char-
acteristics of the test uncertainty may be indicative for the difference between structure
and specimens under ideal conditions.

2.3 Quantification

In this study the model uncertainty θ is considered to be a random variable. The multi-
plicative relationship is assumed in accordance with JCSS (2001a):

R(X, Y ) = θ(X, Y ) Rmodel(X) (1)

where R = response of a structure real resistance estimated from test results and
structural conditions; Rmodel= model resistance estimate of the resistance based on a
model; X = vector of basic (random) variables Xi included in the model; and Y = vector
of variables neglected in the model, but possibly affecting the resistance. Variables X
should be clearly defined. For instance, when resistance of a steel member is affected by
ultimate tensile strength, this strength should be directly included in the model rather
than yield strength multiplied by some factor.
In addition to X and Y variables, it is purposeful to define test parameters, i.e. variables
observed during testing. Obviously the test parameters should include all X and Y
variables, but may also cover other variables that for instance affect outcomes of a test
procedure. As an example ambient air humidity hardly affects real tensile strength of
steel, but may affect accuracy of sensors.

Note that an additive relationship may be considered as an alternative to the multiplica-
tive format given in Equation (1), JCSS (2001a). As models are typically of a multiplica-
tive nature and non-normal (lognormal) distributions are often used for basic variables,
the multiplicative format seems to be preferable. Moreover, it is more appropriate when
the difference between test and model results is proportional to an observed variable. For
instance this difference mostly increases proportionally with increasing structural resis-
tance. Model uncertainty based on the additive format is then dominated by values for
greatest resistances and information obtained by testing of specimens with lower resis-
tances is lost.
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MODEL
UNCERTAINTY

Test results
- Uncertainty of test method (accuracy of gauges, 
errors in readings, definition of ultimate resistance 
etc.)
- Uncertainty in execution of an individual 
specimen/test (differences in strengths in the test 
specimen and control cylinders, differences in actual 
dimensions and those measured or prescribed)
- Other effects (not covered by tests such as time-
variant effects)

Model results
- Model simplifications (assumed stress 
distributions, boundary conditions)
- Description of input data (assumptions concerning 
variables with unknown values - internal 
dimensions, tensile strength, fracture energy, plastic 
strain)
- Computational options (discretisation, type of 
finite elements, boundary conditions -
simplifications made by analysts)

Structure-specific conditions
- Quality control of execution
- Boundary conditions (supports, continuous members, integral structures)
- Loading conditions (transfer, combination of shear and bending moments)
- Thermal and moisture conditions
- Size effect

Test uncertainty

Comparison

Observed uncertainty

Figure 1: General concept of the model uncertainty.

The additive format applies particularly for geometric parameters where the difference
between test and model results is not proportional to the magnitude of basic variables,
but it is rather affected by tolerances of measurement technique.
Model uncertainty could be improved by a multi-parameter regression as considered e.g.
by Song et al. (2010). However, purely physical models then become hybrid of rational
and empirical modelling. That is why it is recommended to improve the physical model.
Realistically assuming a lognormal distribution with the origin at zero (hereafter simply
"lognormal distribution") for R and Rmodel(·), the model uncertainty is also lognormal. Its
characteristics can be assessed using standard statistical techniques such as the Method
of moments, Maximum likelihood method or Bayesian up-dating; see JCSS (2001b) and
Holicky (2013). An alternative procedure of the assessment of the model uncertainty is
provided in Annex D of EN 1990:2002. However, this method, based on the regression
analysis and the Least Square Method, is focused on estimation of a regression coefficient
rather than on the assessment of statistical characteristics of a random variable according
to the JCSS definition.
In general the model uncertainty depends on basic variables X. Influence of individual
variables can be assessed by a regression analysis as described e.g. by Ditlevsen & Mad-
sen (1996).

It is also indicated that the model describes well the essential dependency of R on X only
if the model uncertainty:

• Has either a suitably small coefficient of variation (how small is the question of the
practical importance of the accuracy of the model) or

• Is statistically independent of the basic variables.
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3 Methodology of assessment

The assessment of model uncertainty should be done in terms of a systematic methodology
that consists of the following steps:

• Characterization of the assessment;

• Compilation of a database of model uncertainty observations;

• Statistical assessment of the dataset;

• Derivation of a suitable probabilistic model of model uncertainty and

• Application of the model considering both operational use and further investigations
including acquisition of new test data or use of a more advanced model.

Examples of various elements of the methodology can be found in by Dithinde et al.
(2011), Dithinde & Retief (2013), Huber (2005), Mensah (2012), Mensah et al. (2013a,b)
and Sykora et al. (2013b).

3.1 Characterization of assessment

The degree to which the systematic treatment of model uncertainty is followed depends
on the relative importance of the model uncertainty with respect to the uncertainties
contributed by the basic variables. The following classification of effects and treatment
of model uncertainty provides a convenient framework (with reference to classes defined
in Section 2.1):

1. Nominal effect: Partial factors for basic variables are adjusted to provide a nominal
contribution of model uncertainty; for guidance, this approach could be followed
when the FORM sensitivity factor (see ISO/DIS 2394:2014 and EN 1990:2002) for
model uncertainty is less than 0.4 × 0.8 = 0.32. This approach is typically taken
across a general class of conditions, for example differentiating only between models
for permanent and variable actions; or for the resistance of structural materials.

2. Significant effect: The contribution of model uncertainty is sufficiently significant
to justify a separate partial factor, typically with a sensitivity factor between 0.32
and 0.8; considering importance of model uncertainty to be equivalent to the basic
variables. Explicit provision for model uncertainty allows for differentiation between
various failure modes, execution process, levels of approximation for the resistance
of a specific material class or proneness to local instabilities. Examples include,
respectively, bending or shear, rolled or welded steel sections, ordinary- or high-
strength concrete and different classes of steel cross-sections.

3. Dominating effect: Limitations of functions to comprehensively predict structural
resistance in operational terms result in model uncertainty to be the dominating
factor for some cases even for routine situations in-cluded in standardized design
procedures. Special attention to the assessment of model uncertainty is then re-
quired to ensure the economic attainment of sufficient reliability. Examples include
the shear resistance of reinforced concrete sections and pile foundation resistance.
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The methodology for the treatment of model uncertainty outlined here is primarily formu-
lated in terms of the most severe situation (3) where it is dominating structural reliability.
The methodology can be relaxed and simplified accordingly for situation (2). Treatment
of situation (1) is typically based on generic models for model uncertainty or experience.

3.2 Database of model uncertainty observations

The database of model uncertainty observations (θi) is derived from a set of experimental
observations Ri for which all basic variables X and other deterministic parameters are
available to calculate corresponding values of model prediction (Rmodel,i). Note that any
design bias should be excluded from the calculation of Rmodel. Although certain design
parameters are not explicitly applied in the model (variables Y in Equation (1)), they
affect model uncertainty and should be included in the assessment process. The strength
reduction factor for concrete cracked in shear, longitudinal reinforcement and aggregate
size are examples of such extended interpretation of the relevant basic variables not in-
cluded in several models for shear of reinforced concrete members. Another important
attribute of the experimental dataset is the range of parameter values that represents the
sample space of experimental observations (ΛO) for which model uncertainty is investi-
gated. The correspondence of ΛO to the population space representing the range of design
conditions (Λd) is indicative of the representativeness of the assessment. Constraints on
basic variables such as minimum and maximum reinforcement ratios or dimensional limits
should be included in defining Λd.

Note that it may be sufficient to:

• Consider values of some variables on the basis of previous experience (modulus of
elasticity of steel) or

• Derive them from known relationships with measured basic variables (tensile
strength derived from compressive strength of concrete)

and measurements on specimens may not be necessary. However, additional uncertainty
is then introduced.
In practical terms the most important constraint in model uncertainty assessment is
often the compilation of Ri, including difficulties in obtaining a sufficient number of
observations for proper analysis and assessment. The quality of the data is a function
of the quality of the experimental measurements, in addition to the control of basic
variables and the availability of this information in order to obtain (Rmodel,i), particularly
when use is made of published experimental results. It should always be assured that a
specimen fails in an investigated failure mode; e.g. when the model uncertainty in shear
is investigated beams failed in bending should be eliminated from a database.
As a general observation the probabilistic treatment of model uncertainty is equivalent to
that of basic variables. However, when model uncertainty is dominant, the relationship
between experiment and model rather approaches that of the initial development or
verification of the model.
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3.3 Statistical assessment

In addition to the quality assessment of the physical observations indicated above (meta-
data in statistical terms), the set of model uncertainty observations θi shall be tested to
represent unbiased sampling; outlier observations considered and goodness of fit of the
probability distribution should be verified. Strictly speak-ing experimental campaigns
to measure structural resistance are typically devised for the investigation of the effect
of certain ranges of basic variables for a defined sample space (ΛO), rather than for the
unbiased sampling of the design population space (Λd). An indication of the representa-
tiveness of ΛO to Λd can be obtained by considering the ranges and distributions of basic
variables from the experimental dataset in the form of histograms. A scatterplot of model
uncertainty observations against any basic variable provides an indication of the degree
to which the basic variable is accounted for in the model, both in terms of the trend of
observations and scatter around the trend.
Since the higher statistical moments are sensitive to outlying observations, they should be
carefully identified. Various uni- and multivariate techniques can be followed. Box plots
are used to identify any observation falling outside 1.5-times the range of the inner two
quartiles of observations. The z-score method identifies an observation more than three
standard deviations from the sample mean as an outlier. Scatterplots are used to identify
an outlier falling outside a random range around the trend line. Outliers should not be
rejected outright since they may represent truly extreme observations. However, the rel-
evant meta-data on the specific outliers are scrutinized typically for errors or indications
of not qualifying for inclusion into the sample space.
The final dataset can then be used for conventional statistical assessment by the calcula-
tion of sample moments on which distribution parameters are based.
Deviations from such statistical treatment introduce uncertainties which should be ac-
counted for. When generalizing the model uncertainty beyond the scope of the database,
trends in its mean and dispersion should be carefully considered. Extrapolation with re-
spect to basic variables for which significant trends are observed may be dubious. In the
extrapolation care should be taken not to move to other failure mode, material model or
conditions; e.g. from:

• Ordinary- to high-strength concrete,

• One to another class of steel cross-sections or

• Shear of ordinary-sized concrete beams to shear of deep beams with an arch action

3.4 Probability description of model uncertainty

Conventionally probability models for model uncertainty are preselected as based on ac-
cepted reliability modeling practice. This does not only reflect a pragmatic approach, but
usually insufficient data to derive an appropriate distribution statistically.
As a first approximation a normal distribution represents a conservative approach for
determining the low-er tail of model uncertainty for resistance functions; whilst the two-
parameter lognormal distribution should be more realistic but somewhat un-conservative.
If sufficient data is available to make a reasonable estimate of the skewness of model un-
certainty, the general or three-parameter lognormal distribution (Holicky (2013)) provides
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a more realistic option.
The primary focus of the assessment of model uncertainty θ is to reflect its contribution to
the reliability performance of the model as characterized by the dispersion of the distribu-
tion function (σθ). However the systematic effect or bias as expressed by the mean value
of θ (µθ) can also have a significant effect. Ideally θ should be unbiased; pragmatically
the model should intentionally include a limited degree of conservative bias (µθ > 1); the
occurrence of an un-conservative bias (µθ < 1) is evidence that model development is not
necessarily reliably pragmatic.

3.5 Application

Although the primary focus of the paper is the quantification of model uncertainty as
such, some guidelines on its subsequent application in deriving an appropriate design ver-
ification format can also be formulated. An initial indication of the implications of the
relative importance of model uncertainty as discussed above not only serves as guide for
the assessment of θ, but also for its application.
As before the case of dominating model uncertainty is considered in particular. Evidently
a partial factor for model uncertainty should be included explicitly in the design format.
This is required not only for the purpose of transparency but also due to the ineffective-
ness of partial factors for basic variables to include provision for model uncertainty.
The need for the explicit treatment of model uncertainty is generally limited to specific
situations, such as the shear resistance for structural concrete with stirrups. Provision
for an appropriate partial factor for model uncertainty should then be limited to this
model, rather than as part of a general scheme of partial factors, such as for all failure
modes for structural concrete. It may even be pragmatic to treat such cases separately in
terms of partial resistance factors; the resistance factors should then be based on model
uncertainty, with nominal adjustment for the basic variables.
Parametric assessment of the influence of model uncertainty as done for the statistical
assessment can pro-vide useful insight in the reliability performance of the function. This
could serve as basis for the reassessment of the function as such. Various strategies could
be considered for improved model uncertainty performance. The range of application of
the model may be limited or divided into sub-ranges to allow for differentiated adjustment
of the model partial factor (Holicky et al. (2013)). More fundamental measures include
adjustment of the model to improve the correspondence between experimental measure-
ment and prediction, improving the level of approximation or considering an alternative
approach as basis for the model, Mensah et al. (2013a,b).
Application of model uncertainty may differ for new and existing structures due to the
following reasons:

1. In structural design costs of safety measures such as increasing the amount of rein-
forcing steel are smaller compared to strengthening of an existing structure. That
is why it may be affordable to design using a model with greater model uncertainty
and accept a more conservative solution.

2. Available measurements may often lead to reduction of uncertainties related to
resistance and permanent action effects when assessing existing structures. The
sensitivity factors for these variables decrease whilst sensitivity factors for model
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uncertainties increase, fib SAG 7 (August 2014).

Based on these arguments improvements of the model and related costs can then be
justified for an existing structure as the strengthening is expansive and model uncertainties
play a significant role in the reliability assessment. Several strategies can be adopted when
improvement of the model is needed:

• Reduction of model uncertainty by using a more advanced model; however, in some
cases this step should be taken with caution as the advanced model can require
input data that are difficult to obtain directly,

• Updating uncertainty in the accepted model by tests valid for a specific case; as an
example models for resistance of iron columns are in general associated with great
dispersion of model uncertainty as real resistances are affected by a type of iron and
processes of execution that cannot be exactly described by a single model; when
several columns from an analyzed structure can be tested, outcomes of these may
significantly enhance the estimate of uncertainty in the resistance model.

4 Concluding remarks

Description of uncertainties related to resistance and load effect models can be a crucial
problem of reliability analyses. The present study focused on uncertainties in resistance
models reveals that:

• Model uncertainty should be carefully treated particularly for cases when modelling
of a physical process is impossible or difficult; in such cases model uncertainty often
dominates structural reliability,

• The model uncertainty should be related to test uncertainties, real structural con-
ditions and to computational models under consideration,

• The scope of application of the model should be clearly identified; an example is the
uncertainty in shear resistance of reinforced concrete beams, depending on presence
of special shear reinforcement and amount of longitudinal reinforcement,

• In common cases real resistance can be estimated as a product of the model uncer-
tainty and resistance obtained by the model, lognormal distribution often provides
an appropriate probabilistic description of mod-el uncertainty,

• The assessment of model uncertainty consists of characterization of the assessment,
compilation of a data-base of model uncertainty observations, statistical assessment
of the dataset, derivation of a suitable probabilistic model and application of the
model,

• Application of model uncertainty may differ for new and existing structures.

The proposed approach seems to offer better understanding of the uncertainties in
resistance models and enables the specification of their real characteristics.
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Abstract
Especially in geotechnical engineering a high level of uncertainty in the design of structures
is present. Standards and guidelines recommend the observational method for projects
with a high level of uncertainty and when the geotechnical behaviour is difficult to pre-
dict. However, this design approach is based on engineering judgement in combination
of deterministic approaches, which are adapted sequentially whenever new observations
are available. This formulates the need for a sound framework to quantify forecast uncer-
tainty. The contributions explained the sequential data assimilation concept, which can
reduce the forecast uncertainty by using observations. A case study on the application of
this methodology on a simple example showed the principle of the proposed methodology.

1 Introduction

Design and construction of geotechnical structures often involves a wide range of uncer-
tainties, which are generally associated with the interpretations and assessment of geotech-
nical properties form a set of data. Eurocode 7 [2] recommends to use the observational
method (OM) in projects with a high level of uncertainty and when the geotechnical
behaviour is difficult to predict. This design approach enables the engineer to address
the uncertainties by continuously predicting, observing and altering the design during
construction [12].

Since Peck [11] first formulated the design philosophy of the OM, the method has been
contentiously refined and improved. The major principles of the OM are to initially
assess acceptable limits of behaviour and the range of possible behaviour for a structure,
subsequently followed by monitoring and evaluation of the actual behaviour. During
the design phase, it is of great importance that prospective deviations in geotechnical
behaviour and associated failure mechanisms are identified so that appropriate actions
can be devised in an early stage of the design process. In case of deviation from initial
assessments and established limits during construction, actions have to be preformed
according to the plan elaborated in the design phase.

Up to now, the OM is based purely on expert judgement and on a deterministic design
approach [5, 11, 12, 9, 13]; recently, some tried to incorporate the uncertainty of the
soil properties using standard statistical approaches in a Bayesian framework as given in
[14]. However, the variability of the simulation model is not considered explicitly and the
uncertainties of the observations are not taken into account because they are considered
as small in comparison to the subsoil uncertainty.
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In this contribution, I provide a statistical framework, which can consider both uncertain-
ties of the subsoil and of the observations. Moreover, I show that we can also incorporate
the observations in the probabilistic analysis of a complex geotechnical problem. Addi-
tionally, I show how to quantify the forecast uncertainty based on methods from numerical
weather prediction. The possibilities and limitations of this approach are discussed in a
case study, which shall help the reader to grasp the basic ideas more clearly. At the end
of this contributions there is a summary and conclusion for future research steps.

2 Combination of uncertain observations and
probabilistic forecasts

Apart from geotechnical engineering, uncertainties in model parameters are an especially
dominant source of uncertainty for e.g. hydrological models and models in numerical
weather prediction.

2.1 Review of data assimilation methods

Data assimilation methods can take advantage of measurements whenever they are avail-
able and are thus useful in both online and offline applications. These methods have
more flexibility in dealing with time-variant parameters, compared with batch calibration
methods. Some sequential calibration methods also explicitly address uncertainties in
input data and model structures. As described in detail by Evensen [4], frequently used
data assimilation methods include variational and sequential method.

2.1.1 Variational data assimilation

Four dimensional variational data assimilation (4D-Var), is a method of estimating the
set of parameters by optimizing the fit between the solution of the model and a set
of observations, which the model is meant to predict. The procedure of adjusting the
parameters until the model ’best predicts’ the observables, is known as optimization. The
’four dimensional’ nature of 4D-Var reflects the fact that the observation set spans not
only three dimensional space, but also a time domain.

The approach of this inverse modelling technique is to find the initial conditions of a
model, such as to minimize some scalar quantity J . The cost or penalty function J [x] is
a functional of the state vector x and is defined to be a global measure of the simulta-
neous misfit between x, the current guess of the true model state, and two independent
’versions’ of the atmospheric representation. One of these versions is that according to
the observations themselves, and the other is taken from a model forecast. The latest
observations are contained in the vector y.

We can now proceed to define a form of which simultaneously penalizes a bad fit between
the model state x and the background, and the model state and the predicted observations,
given in equation (1).
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The usual form of the objective function J is given in the following equation:

J [x] =
1

2
(xB − x)T B−1 (xB − x)+

1

2

∆t∑

t=0

(
y(t)−H0

t [x(t)]
)T

E−1
(
y(t)−H0

t [x(t)]
)
(1)

where here and in the remainder of this report, the model state x applies to the initial
time t = 0 (defined to be at the start of the current assimilation cycle) unless explicitly
labelled otherwise. Other symbols are the following: B is the background error covariance
matrix, y (t) is the set of observations made at time t, H0

t [x (t)] is the part of the forward
model which predicts the observations based on the model’s current state, and E is the
observational error covariance matrix. The vector y (t)−H0

t [x (t)] is known as a residual.

One has made various assumptions when writing down this cost function. Firstly, it is
assumed that the errors are unbiased and Gaussian. Another assumption is that the
model is ’perfect’ over the assimilation period.

This cost function is minimized in order to get the single state parameters and the initial
conditions of the given system.

3D-VAR stands for the variational data assimilation, in which - during a particular as-
similation period - no account is taken of the time that observations are taken. The three
dimensions are spatial. 4D-VAR stands for variational data assimilation within three
space dimensions plus one time dimension.

Evensen [4] reports that the drawback of the variational approaches is the limited ap-
plicability. It is reported that it is very difficult do implement and solve the equations
of highly non-linear systems. Additionally, a large number of state variables, which are
stored in the state vector x, lead to a very large error covariance matrix B and thus a
huge computational effort.

state

time

observation uncertainty

simulation uncertainty

forecast uncertainty

true field

analysis

observation

t+1t

Figure 1: Concept of sequential data assimiliation with the uncertainty of the simulation,
the observation and the forecast for a given state.
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2.1.2 Sequential data assimilation

Contrary to the sequential methods, which update the model solution every time obser-
vations are available, variational methods seek an estimate in space and time where the
estimate at a particular time is dependent on both past and future measurements.

2.2 Theoretical background on sequential data assimilation

After its introduction by Evensen [4], the Ensemble Kalman Filter (EnKF) has been
widely used in atmospheric, geographic, and oceanic sciences. It was originally proposed
as a stochastic or Monte Carlo alternative to the deterministic extended Kalman Filter
(EKF) by Evensen [4]. The EnKF was designed to resolve the two major problems related
to the use of the EKF with non-linear dynamics in large state spaces, i.e. the use of an
approximate closure scheme and the huge computational requirements associated with
the storage and forward integration of the error covariance matrix. The EnKF has gained
popularity because of its simple conceptual formulation and relative ease of implemen-
tation. Furthermore, the computational requirements are affordable and comparable to
other popular sophisticated assimilation methods such as the 4D-VAR method.

It was first developed for dynamic state estimation to improve initial conditions for nu-
merical forecasts, and was later applied to model parameter estimation. In EnKF, the
posterior estimate xa, i.e., the analysis is given by

xa = xf +K
(
y −Hxf

)
(2)

and the analysis error covariance Pa is given by

Pa = (I−KH) Pf (3)

where xf is the prior estimate with n state variables, y is the observation vector of m
observations, H is the observation operator matrix (dimension m× n) which maps state
variables to observations, I is an identity matrix (dimension n×n), and Pf is the forecast
background error covariance (dimension n× n). The Kalman gain matrix K (dimension
n×m) is defined as

K = PfHT
(
HPfHT +R

)−1 (4)

where R is the observation error covariance (dimension m ×m). PfHT is the predicted
covariance between the states and observed variables, and HPfHT is the predicted error
covariance of the observed variables; this predicted error covariance is quantifying the
forecast uncertainty of the system, which is represented by the state vector x.

3 Case study

3.1 Introduction

This case study demonstrates the possibilities and limitations of sequential data assimi-
lation in geotechnical engineering. For simplicity reasons, I investigates the loading of a
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Table 1: Statistical properties of the input ensemble of the paremtetric study A.

Variable distribution mean value COV = σ/µ
s lognormal 0 mm 30 %
η lognormal 2.38 · 106 MPa · h 30 %
Eref lognormal 2, 400 MPa 30 %
m lognormal 0.5 30 %

visco-elastic, non-linear material (e.g. salt), which is simulated by a simple, one dimen-
sional, time dependent non-linear system. This academic example shall help the reader
to understand the concept and to be abel to apply it to other problem sets.

3.2 Mechanical system

The visco-elastic material is simulated in the sequel parametric study by the Kelvin-
Voigt model and by the Maxwell model. Although these simple approaches are limited in
describing e.g. salt or clay, I choose these well known models due to their simplicity.

The Kelvin-Voigt model is described by equation (5).

ε̇ =
σ

η
− E (σ)

η
ε (5)

Herein, ε̇ is the time increment of strain ε under a given load σ and for given viscosity η
and a given stiffness E. The stiffness E (σ) is dependent on the stress level σ and on the
Ohde-exponenet m (equation (6)).

E (σ) = Eref ·
(

σ

pref

)m
(6)

The Maxwell model is defined in equation (7).

ε̇ =
σ̇

η
+

ε

E (σ)
(7)

3.3 Parametric study A

The state vector x = [s, η, Eref ,m]T consists of the calculated settlements s, the viscosity
η, the reference stiffness Eref and the Ohde exponent m. Typical values for the material
properties of salt are assumed. The mean values µ and the coefficients of variations COV
and the corresponding distributions are given in table (1).

Within the EnKF scheme, I choose the Kelvin-Voigt model (equation (5)) as simulation
model. This simulation model approximates reality in this case study, which is given by
the Maxwell model (equation (7)). Both equations are solved in time by using the well
known Runge-Kutta scheme, given in standard mathematical textbooks [1].

The observations are generated by the solving equation (5) using the Runge-Kutta scheme
and adding a measurement noise (µobs = 0 mm, σobs = 1 mm).
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Figure 2: Typical EnKF simulation results showing the true model, the observations and
the assimilated properties (a) load σ(t), (b) calculated settlements s, (c) viscos-
ity η, (d) reference stiffness Eref , (e) Ohde exponent m; (f) root mean square
error between the true model and the assimilated simulations versus time.

Figure 1 visualizes the uncertainty of the simulation, the observation and the forecast for
a given state. One can see that the spreading of the simulation is bigger compared to the
spreading of the observation. Using the sequential data assimilation, one can reduce the
simulation uncertainty significantly and derive the uncertainty of the forecast following
the corresponding equation in section 2.2. The results of the time step t is the basis of
the simulation of the following time step t+ 1.

After study figure 1, one can follow the results of the EnKF simulation more easy. In
figure 2(a) one can see the load σ(t) on one meter of visco-elastic soil, which is changing
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Figure 3: Histograms of the state variables x = [s, η, Eref ,m]T at t=200.

over time. The single elements of the state vector are plotted in figure 2(b, c, d, e) as
results of the sequential data assimilation process. The observation of the settlements in
figure 2(b) are used in the EnKF framework. One can clearly see the convergence of the
components of the state vector after t = 180, which is visualized in figure 2(f) by showing
the root mean square error (RMSE). The RMSE is the calculated between the actual
state vector and the original values of the true system. One has to keep in mind that this
error can not be zero because two different models have been used. This is a normal case
in engineering problems, because the true model is never fully known.

In figure 2(a) one can see that the settlements are showing the fastest convergence com-
pared to the other elements of the state vector. It can be seen in figure 2(b) that the
viscosity is showing a faster convergence than the stiffness Eref in figure 2(d) or the Ohde
exponent m in figure 2(e). By looking to equation (7), one can see that the viscosity
η is proportional to the load σ whereas the stiffness is proportional to the change of
strains. Therefore it is logical that the stiffness Eref and the Ohde exponent m show a
slower convergence than the viscosity. Moreover, one has to keep in mind the variability
of the parameters. By looking in table 1, one can see that the viscosity η has a bigger
viscosity compared to the stiffness Eref and the Ohde exponent m. In academic case
of a full knowledge of the mechanical model, one would have a faster convergence of all
parameters.

I visualised the forecast uncertainty in figure 3. The COVx of the state variables have
reduced. After 200 time steps the settlements have a COVs = 5.11 %, the viscosity has
a COVη = 5.86, the stiffness has a COVEref = 32.01 % and the Ohde exponent has
COVm = 4.90 %. The differences in the forecast uncertainties is related to the issues
discussed in the paragraph before.

3.4 Parametric study B

Additionally I investigate the influence of the observation variance σ2
obs, the COV of

the state vector COVx and the ensemble size. The basic configuration is using the
observation variance σ2

obs = 0.5 · 10−3 and the COVx of the input ensemble COVx =[
COVs = 30%,COVη = 35%,COVEref = 30%,COVm = 5%

]T. The input ensemble con-
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Table 2: Results of the parametric study B for the variation of the observation variance
σ2
obs, the variability of the state vector and the ensemble size.

COVs COVη COVEref COVm

Observation of the variance σ2
obs

2.5 · 10−3 2.65 3.177 27.86 4.89
0.5 · 10−3 5.11 5.86 32.01 4.90
1.0 · 10−3 9.66 11.15 32.79 4.91
Scaling of the variances of the state vector
50% 4.31 4.88 16.41 2.4563
100 % 5.11 5.86 32.01 4.90
Size of the ensemble
20 6.10 7.03 43.56 5.43
100 5.90 6.53 40.65 4.93
300 5.11 5.86 32.01 4.90

sists of 300 samples. The results given in table 2 summarise the forecast uncertainty
at t = 200. From these results one can deduce that the reduction of the observation
variance σ2

obs is reducing the uncertainty of the forecast uncertainty more than the other
investigated parameters. If one scales the variability of the state vector COVx or changes
the size of the ensemble, the influence is less than the effects of reducing the observation
variance σ2

obs.

A variation of the time intervals of the observations was not carried out. One can clearly
derive from section 2.2 that the forecast uncertainty will reduce if more observations are
performed. Due to this reason, I did not investigate this influence.

4 Summary and conclusions

The observational method is commonly used design approach in geotechnical engineering.
Studying recent publications on the applications of the observational method [5, 9, 13, 12,
11, 14], one can see the need of a framework provided by the sequential data assimilation
methodology.

I show in this contribution the sequential data assimilation scheme, which can be used
to reduce the forecast uncertainty by incorporating observations. The principle of this
approach is derived and shown in case study. This case study shows a significant reduction
of the variability and investigates in a simplified sensitivity analysis the influence of the
observation variance, the variability of the state vector and the ensemble size. This shall
help the reader to understand the concept of data assimilation to other geotechnical
applications and to be aware of the possibilities and limitations of this approach.

Using the experience, which is provided on basis of inverse analysis in several publications
[6, 14], one could go the next steps using the sequential data assimilation methodology in
engineering. The first steps [7, 10] should be proceeded and the framework of sequential
data assimilation has to be extended due to the limitations of the Ensemble Kalman filter
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(EnKF): The assumption of normally distributed properties and errors can be misleading
in geotechnical problems. In case one wants to use not-normally distributed variables,
on can introduce a transformation to lognormal distributions or to aim for more complex
approaches (e.g. particle filter or unscented filter) in sequential data assimilation, as
described in [3, 8].
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Abstract. An essential part of the evaluation of the capability for a non-destructive
testing system (NDT) is defined as “the probability of detecting a defect with a particular
size under specified inspection conditions and a defined procedure”. The accepted statis-
tical parameter of quantifying this definition is the Probability of Detection (POD). The
POD is usually expressed as a function of flaw size (e.g. defect length or defect depth)
according to the physical background of the testing system.
One of the most important information for assessment of reinforced concrete structures is
the information about the corrosion state. The detection of corroding areas is executed
non-destructively with a so-called half-cell potential measurement method. The associ-
ated defect size is the anode area. The aim of the paper is the evaluation of half-cell
potential measurement method using POD.

1 Introduction

The probabilistic residual service-life prediction of reinforced concrete structures is a pow-
erful tool for an economic condition control of existing structures where corrosion is ex-
pected. Chloride induced corrosion is one of the major deterioration mechanism for rein-
forced concrete structures which is exposed to deicing salt or seawater. As a consequence
local loss of steel cross section and subsequent cracking and spalling of the concrete cover
could impair the serviceability and if no maintenance is executed also the load bearing
capacity of the structure.
The half-cell potential measurement method, also called as potential mapping, is a com-
mon used method for detection of reinforcement corrosion in concrete structures non-
destructively. This measurement delivers fundamental information for the probabilistic
residual service life prediction. But there is a lack of knowledge about the accuracy of
corrosion detection.
The evaluation of POD might overcome the lack to make it comparable to the typical
NDT methods.

1.1 Basics in determination of the probability of detection

A parametric POD approach based on the physical laws to estimate the reliability of
eddy current testing in finding cracks was introduced by Berens [3]. It is nowadays a
widespread method in a lot of different industrial branches and used as a characteristic
magnitude for quality.
There are two related probabilistic methods for analysing reliability data and producing
POD-curves as a function of the flaw size. The first type of data is called “hit/miss” data
using the discrete response of the NDT-system. The NDT results are only recorded in
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term whether the flaw is detected or not. However, in many NDT-systems there is more
information in the NDT response and can be interpreted as the perceived flaw data. The
data are continuous response signals (called â). Each type of data - Hit/Miss or signal
response - is analysed using different probabilistic models.
The behavior of the signal response of the testing equipment is described in terms of a
simplified relationship between the maximum signal (â) and the significant defect param-
eter causing the signal (a) (Figure 1a). For example, the penetrated length of the defect
in radiographic testing, the area perpendicular to the sound field in ultrasonic testing [9],
or - in case of eddy current crack testing - the length of the crack [3], are typically used
as the main influencing parameters.
This relationship is based on the physical laws of the testing method, and can decrease
the amount of data which are necessary for a significant result for the probability of detec-
tion. The plotted graph of the data and the abovementioned relationship is called â vs. a
graph. The relationship between the signal â and the main defect parameter a is usually
required to be linear - directly or after an applied mathematical transformation [10]. This
relationship is depicted by a linear line passing through the data values (Figure 1a). In
an uncensored way, the linear regression curve, estimated by the mean trend through the
data points, rises usually with the size of a. For the POD evaluation, the linear regression
describes the mean values of the distribution for each a. E.g. at the cross section with
the decision threshold the POD is exactly 50%. For a rising mean trend for a, the POD
is also rising with a.
With the deviation, the mean of the data and a defined decision threshold it is possible
to calculate the cumulative distribution function of the POD for every parameter status
[3]. It is summed up in the POD curve (Figure 1b).

Figure 1: â vs. a-graph (a) and probability of detection curve (b)

Those types of curves were applied for simple cases where it is assumed that the POD
of the defect depends only on the defect size and no other influence of the defect or the
component is taken into account. In a POD based on experimental data the confidence
band is an important and necessary statement. For simulation uncertainties of model
parameters were introduced (e.g. PICASSO or MAPOD-Working group). In this case
the uncertainty models are still under investigation. Although, both approach to calculate
confidence level might lead to different results. In this work, it was waived to calculate
no further confidence band than the 50%, shown by the POD curve itself.
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1.2 Corrosion detection in reinforced concrete structures

Potential mapping is a measurement method which is able to detect corroding areas non-
destructively in reinforced concrete structures. Therefore, potential mapping data are
used to check if and where corrosion has started. During potential mapping, the potential
difference between an external reference electrode and the reinforcement is measured. A
lower potential indicates a higher probability of corrosion. Several guidelines ([10], [5],
[1]) contain further information about this measurement method.
Concerning the probabilistic modeling of potential mapping the appropriate defect size
is the anode area. This is the section of the reinforcement which is corroding during
the measurement. But it is not always the defect size that influences the probability of
detection. In addition to that, all influencing factors which are affecting the measurement
method itself can have an influence on its reliability. With focus on potential mapping the
following influencing factors has to be taken into account: geometry,cover depth, concrete
resistivity and grid size [8].
To achieve a probability of detection curve of corrosion detection it is necessary to com-
pare real measurement result with the true corrosion condition state of the reinforcement.
The corrosion condition state is only identifiable visually through the removal of the
con-crete cover. This is massive intervention in a structure and visual identification of
corroding areas is also afflicted with uncertainties. For example, it is unknown if visually
identified anode areas were active during the measurement procedure. To exclude this
kind of uncertainty a numerical model to estimate the probability of detection of potential
mapping is pursued.
Typical construction components, where corrosion can be expected are chloride exposed
components like plate§s of a bridge deck or parking decks. Referring to this, the numerical
model corresponds to a reinforced deck. The varying defect size, the anode area, is placed
in the center of the model. Besides the anode area the following influencing factors are
varied according to table Table 1.

Parameter Unit Ref
anode AA cm2 0.8, 1.5, 2.3, 3.1, 3.9,

4.7, 5.5, 6.2, 7.0
resistivity R Ωm 400 [7]
concrete cover dc mm 10, 20, 30, 40, 50
anodic polarization resistance Ra Ωm2 0.5, 1.3, 2.0, 10 [11]
driving potential ∆E mV 325, 375, 425 [11]
resting potential Anode φcorr, a mVSCE -540, -600, -630 [2], [6]
resting potential Cathode φcorr, c mVSCE -175, -225, -225 [2], [6]
cathodic tafel slope βc V/dec 120, 285 [11], [4]
exchange current density i0 µA/cm2 0.003, 0.147 [11], [4]

Table 1: Numerical input parameters.

The measurement procedure and the evaluation method influence also the potential map-
ping and respectively the probability of detection. This dependency can be reflected by
the variation of evaluation of the numerical results. Therefore, different grid sizes (5x5cm2;
15x15cm2) are considered.
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The main factors influencing potential mapping are the concrete resistivity and the grid
size [8]. The influence on the POD of potential mapping of these influencing factors has
to be evaluated separately.
Each simulation corresponds to one potential field measurement. After the evaluation of
the simulation the results in dependence of the threshold potential are compared with
the true corrosion condition state. Now, all required data for the analysis of the POD of
poten-tial mapping are available.

2 Results for the POD in potential field measurements

The simulation results for the potential field measurement showed that the main defect
parameter a is the area of the corrosion. The results for different resistance values and
measurement grids should not be handled in one evaluation. In this paper they are be
han-dled as different testing procedures and result in different PODs. In Figure 2 the re-
sults of the measurement grid of 5x5 cm2 and 15x15 cm2 is presented. For the maximum
amplitude and signal for the POD evaluation â the signal of the equipment was used.
The Enegative is the signal dependent on further settings. Therefore, it was decided to use
a signal value which is independent of further setting, e.g. the absolute value between
Enegative and Ethreshold.
The signal â was rising with the area of corrosion a approximately linear, which complies
with the linearity requirement of the POD without using any transformation. The devi-
ation of the data values around the main physical law was achieved by introducing the
influence of further parameters in the simulation (e.g. R, dc, Ra, and βc, i0) in specific
intervals (Table 1). In order to determine a threshold potential Ethreshold the simulated
potentials have to be divided into two probability distributions; one for active and one
for passive reinforcement. The passive reinforcement can be regarded as measurement
noise. As a threshold potential was chosen the 95% quantile of the active distribution.
The decision threshold, the Ethreshold, equaled -0.24 VSCE.

Due to no censored data a least square estimation was used. For the 5x5 grid the R2

equals 0.89. For the 15x15 grid the R2 equals 0.85.
The calculation of the POD (Figure 3) is based on the cumulative normal distribution
with the estimated distribution parameters on the linearization of â vs. a graph and the
decision threshold according to Berens [3]. The normal distribution was assumed; in the
future an adequate distribution model will be tested on empirical data.
The intersection of the 90% probability of detection with the cumulative distribution
curve was chosen, to use a comparable characteristic for the different methods. The
correct procedure would include experimental data and a confidence band. For a first
assessment of the method, the a90/50 is still a useful number in context with simulated
results.

As expected a finer grid size leads to a better detectability of corrosion processes. With
a grid size of 5x5 cm2 anode areas with a size of 1.7 cm2 are detectable with 50% in 90%
of all cases, while for a grid size of 15x15 cm2 an anode area of 3.5 cm2 can be indicated.
This kind of information is useful to determine the needed grid size in dependence of
the re-quirements. The decision threshold is based on the noise and therefore on the
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Figure 2: â vs. a-graph for the potential field measurement of corrosion areas in cm2 with
a measurement grid of 5x5 cm2 (above) 15x15 cm2 (below); R=400 Ωm

false alarm rate. It was assumed that for both experiments the noise was the same – so
the decision threshold will be the same and at the end the false alarm rate is the same.
Through the threshold the POD of 5x5 cm2 crosses the y-axis clearly about 0. Based
on the normal distribution the behavior was expected. A higher decision threshold and
another distribution model might change this. The uncertainty for the distribution model
is higher while going into extreme values. For the aim of a rough overview with the POD
it can be accepted, even if the model or the threshold is not exactly chosen, which is an
essential future task for real data PODs.

3 Conclusion and Outlook

A numerical approach is presented for evaluating the probability of detection of potential
mapping with the â vs. a model. The anode area has the major influence on the POD
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Figure 3: POD-graph for the potential field measurement of corrosion areas in cm2 with
a measurement grid of 5x5 cm2 (above) 15x15 cm2 (below); R=400 Ωm

to-gether with the used grid size. With increasing gird sizes decreases the detectable an-
ode area. In the used numerical model the concrete properties like resistivity or concrete
cover are totally homogenous. But in reality no concrete has this characteristic. It is
assumed that with increasing inhomogeneity the probability of detection decreases.
The results of the â vs. a evaluation based on the simulations showed that the linear
regres-sion between anode area and signal can be used. In the future the experimental
evaluation of the estimated result should be in the focus. For the experimental data also
the evaluation of the used statistical distribution model and the homoscedasticity of the
standard deviation should be tested.
In summary the POD is an important tool for the NDT and should be used also for poten-
tial mapping to compare with other methods for one task or to evaluate the capability of
the method in one particular case.
The confidence band as a characteristic for the reliability evaluation should be based on
empirical data, which is a task in the near future. The distribution model and the thresh-
olds for the NDT method should be evaluated for calculating a POD for the potential
field measurement in the field.
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1 Introduction

Following the usual definition of risk as combination of the probability of an event and its
consequences, the task of risk analyses is to determine systematically the sources of risk
and the associated parameters probability and consequence [9]. Risk evaluation is then
the process of comparing the risk against given risk criteria to determine the significance
of risk [9]. Risk assessment as the overall process of risk analysis and risk evaluation [9]
can such be used to demonstrate that specific protection goals for occupational health and
safety (hereinafter called OHS) or for the safety of the public and the environment are
achieved. This demonstration requires a definition of what risk is acceptable or not. There
is a common understanding that the “· · · risk of suffering harm is an inescapable aspect
of living” [6]. On the other hand, the “· · · progress in the quality of our lives is readily
acknowledged but, paradoxically, it has been accompanied by an increased expectation
for a society free of involuntary risks· · ·Though people accept that we should continue to
take advantage of advances in science and technology, this is moderated by expectations
that:

• those responsible for the hazards should ensure that adequate measures are taken
to protect people from the harmful consequences that may arise from such hazards;

• the State should be proactive in ensuring that its arrangements for securing the
protection of people from risks are adequate and up to date as distinct from reacting
to events, and that those arrangements should address, as necessary, the concerns
the hazards give rise to.” [6].

It follows that risk acceptance is not a scientific exercise, but closely related to risk
perception as part of risk communication. The proposals for thresholds of acceptable or
tolerable risk as discussed in this paper should be understood as supporting argumentation
among experts, not as the suitable way of communication with the community, however;
for this purpose we refer to existing literature [20, 4, 3].

This paper is organized as follows: First, we describe the historic development of the con-
cepts of acceptable and tolerable risk, as they are currently and broadly used in different
contexts of risk discussions. Next we give an overview of current risk values as used in
different countries. Finally, we derive from these values proposals for risk thresholds to
be applied for risk analyses.
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2 Development of concepts – a short historic overview

The discussion of risk thresholds has a long tradition in the UK and the USA, as well,
mainly initiated by the extension of nuclear energy and consequent risk discussion in
the mid of the 70s (USA) and early 80s (UK) of the last century. Background of these
discussions was the fact that fatalities may occur long time after they were initiated, as it
is the case for cancer diseases due to exposure to radioactive substances or direct radiation
or carcinogenic substances. In this context the US Supreme Court’s benzene decision in
1980 was decisive: “Some risks are plainly acceptable and others are plainly unacceptable.
If, for example, the odds are one in a billion that a person will die from cancer by taking
a drink of chlorinated water, the risk clearly could not be considered significant. On
the other hand, if the odds are one in a thousand that regular inhalation of gasoline
vapors that are 2% benzene will be fatal, a reasonable person might well consider the risk
significant and take appropriate steps to decrease or eliminate it” (Supreme Court 1980).
From this decision, the concept of the de minimis exposition was developed, following the
legal principle ‘de minimis non curat lex’ or simpler: The law does not concern itself with
trifles. So ‘trifles’ or ‘negligible risks’ are only indirectly characterized by the fact that no
“sufficient probability” can be determined. Mere suspicions about possible adverse health
effects cannot justify the assumption of a non-negligible risk. The probability of negligible
risks was characterized usually in a more or less qualitative way, as e.g. “one in a billion”
in the Supreme Court decision cited above.

It was soon recognized that it is necessary to consider also acceptable risks besides neg-
ligible risks: There are risks with a quantifiable and justifiable probability which we can
consider as inevitable life’s risks. Examples are our exposure to the average natural level
of radioactivity or to cancerogenic substances in the ambient air due to emissions of cars
or industrial activities etc. The target would be then to stay below the thresholds of
acceptable risks by controlling emissions, implementing protection measures like PPE or
safety instrumented systems (see, e.g., IEC 61508, IEC 61511). But it does not mean
that risks are to be avoided at all costs. This was the reason why the Health and Safety
at Work etc. Act 1974 introduced the principle of ALARP (‘As Low As Reasonably
Practicable’) in the UK. The definition of ‘reasonably practicable’ was given as early as
1949 in the important case Edwards vs. National Coal Board where the Court of Appeal
stated in the judgement: “Reasonably practicable is a narrower concept than ‘physically
possible’ and implies that a computation must be made· · · in which the quantum of risk
is placed on one scale and the sacrifice involved in the measures necessary for averting the
risk (whether in time, trouble or money) is placed on the other and that, if it be shown
that there is a gross disproportion between them – the risk being insignificant in relation
to sacrifice – the person upon whom the obligation is imposed discharges the onus which
is upon him.”1

For practical implementation, the UK Health and Safety Executive (HSE) suggested to
distinguish three areas or regions of risks: “Broadly accepted”, “tolerable” and “unac-
cepted” or “intolerable” risk (Figure 1).

We adopt here the general definitions as proposed by (Kalberlah et al. 2005):

1http://en.wikipedia.org/wiki/Edwards_v_National:Coal_Board
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Figure 1: ALARP principle (HSE 2014)

“The “acceptance threshold” defines the transition to a low risk for harmful health effects,
which is identical to the German legal term “threshold of concern”. Exceeding this accep-
tance threshold (or threshold of concern) but falling below the danger threshold indicates
entry into the region of concern.”

The region of concern is identical with the Tolerability region of HSE in Figure 1. In
addition, the term “danger threshold” has been introduced:

“The “tolerance threshold” defines the transition to an unacceptable risk for harmful health
effects, which is identical to the German legal term “danger threshold” (“sufficient proba-
bility for damage to occur”). Exceeding the tolerance threshold indicates entry into the
danger region” [10].

Some remarks on these definitions are necessary:

1. ISO/IEC 51 defines “tolerable risk” as a “risk which is accepted in a given context
based on the current values of society” and “safety” as “freedom from unacceptable
risk”. This indicates that there is also no clear distinction between the terms “tol-
erable” and “acceptable”. This is also partly reflected in current standardization as
e.g. ANSI/PMMI B155.1-2006 (Safety Requirements for Packaging Machinery and
Packaging-Related Converting Machinery) which says: “· · · “Acceptable risk” and
“tolerable risk” are considered as synonymous. Note 1: The expression “acceptable
risk” refers to the level at which further risk reduction will not result in significant
reduction in risk; or additional expenditures will not result in significant advantage
of increased safety highlighted by the authors”. Also the British Standard Institu-
tion (BSI) replaced the term “tolerable risk” with “acceptable risk” – the goal to
be achieved is acceptable risk levels, above these levels and below the threshold of
tolerable risk there is need and chance for optimization.

So we conclude that there is a common understanding of acceptable risk; neverthe-
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less the additional definition of a tolerance threshold seems to make sense and should
be introduced in future standardization for further clarification (see also chap. 3).

2. “Danger” or “danger threshold” are not a terms generally used in the Anglo-Saxon
area. Current standards prefer to refer to “hazard” as “potential source of harm”
(e.g. [8]) whereas “danger” can be understood as something like an “actual source of
harm” which leads with sufficient probability and in foreseeable future to a harm.

3. One should be very well aware of the meaning of terms like “acceptable” and “tol-
erable”. Society as a whole might tolerate “ . . .to live with a risk so as to secure
certain benefits and in the confidence that the risk is one that is worth taking and
that it is being properly controlled. However, it does not imply that the risk will be
acceptable to everyone, i.e. that everyone would agree without reservation to take
the risk or have it imposed on them” [6].

We can summarize our short overview in the following theses:

Acceptance gives not rise to exclusion or limitation of liability

As ANSI/PMMI B155.1-2006 or HSE we think that a level of risk is acceptable when
further risk reduction will not result in significant reduction in risk or additional expen-
ditures will not result in significant advantage of increased safety. This has to be proven,
however: No matter how the threshold is actually set, for the patient suffering from a
severe disease due to his or her exposure to a harmful event the risk has become real-
ity – it’s probability is 100%. Usually any adverse event is due to a sequence of causes
and effects (technical failures, wrong decisions or other human errors etc.). It must then
be demonstrated that all necessary measures and actions have actually been realized to
avoid or mitigate that event. It would certainly not be sufficient to refer to an analysis
which showed that the risk was below the acceptance threshold and to the simple fact
that “probable events are (unfortunately) possible events”.

Acceptance requires awareness and/or consent

Acceptance of a risk is based on compliance with the values of society (see above) and
therefore requires consent of those who are potentially affected. Since education, training
and individual capacities are probably not on the same level for all workers in a chemical
plant, e.g., it is questionable whether all workers are fully aware of the risk they seemed
to accept and what this means for them. Rather, one could assume that people expect
that they avoid risks if they use their protection equipment as required, follow the safety
instructions and observe them in a diligent way. We assume that many of these workers
are not aware of the argument that they “voluntarily took the risk” or even “accepted
higher levels of risk than the public”.

Acceptable risk 6= Negligible risk 6= Tolerable risk

From the last paragraph it follows that observing the threshold of acceptable risk is a
continuous task of the risk and safety management. Acceptable risks are no trifles, so the
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law might and will well concern itself with such risks as soon as harm occurred – they are
not negligible. On the other hand, also risks above this threshold can well be tolerable.
Significant or unacceptable or intolerable risks are those where a danger will occur with
sufficient probability.

3 Tolerable and acceptable risk

3.1 Occupational Health and Safety

Limit values for OHS are usually based on operational experiences (where there might be
always a potential for optimization, see above) or general risks of life (see 3.2).

Typical annual fatality rates for workers in different sectors are given for the UK and
Germany in Table 1 (called “Tolerability limits for risks entailing fatalities” by HSE):

Known risks at the workplace Frequency (fatalities per
year of Working Lifetime)

Agriculture [1] 3 : 1,000 /WLT 1 7.5 ∗ 10−5/a
Agriculture (not sea fishing) [6] 3 : 1,000 /WLT 1 : 12, 984/a(= 7.7 ∗ 10−5/a)
Building industry [1] 2 : 1,000 /WLT 5 ∗ 10−5/a
Construction [6] 2 : 1,000 /WLT 1 : 21, 438/a(= 4.7 ∗ 10−50/a)
Mining [1] 3 : 1,000 /WLT 7.5 ∗ 10−5/a
Mining and quarrying (including
offshore oil and gas) [6] 3 : 1,000 /WLT 1 : 14, 564(= 6.9 ∗ 10−5/a)

Retail [1] 4 : 10,000 /WLT 1 ∗ 10−5/a
Service sector [6] 1 : 10,000 /WLT 1 : 388, 565(= 2.6 ∗ 10−6/a)

1 WLT = Working Lifetime = 40 years, assuming 8 hours of exposure per working day) Grey-
shaded values are calculated from the originally published values

Table 1: Annual fatality rates in different industries

International regulations for working activities also define acceptance and tolerance
thresholds (or analogous quantities) (s.a. [10]):

The situation in the USA is not as clear as in other countries. The Food and Drug
Administration (FDA), e.g., proposed a threshold of de minimis risks in the order of
1:1,000,000 (one additional fatality in a population of one million exposed persons during
a lifetime of 70 years) [18]. On the other hand, most US authorities consider a risk higher
than the threshold of 4∗10−4 as significant and actually not tolerable (de manifestis risks ;
[18]). For the US authority responsible for OHS (OSHA, Occupational Health and Safety
Act) the borderline between “acceptable” and “unacceptable risks” was defined by approx.
1:1,000 [10]. But: “Although OSHA has not articulated a strict definition of significant
risk, it has generally used 1:1000 as a benchmark of significance. Labour groups have been
concerned that 1 in 1000 has been interpreted by OSHA (and some industry lawyers) as
a level of de minimis rather than significant risk. They would like to grant OSHA the
flexibility to initiate rule making to reduce residual risk in the range from 1 in 1000 to 1
in 1 Million” [17].
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Country Regulated area Risk / year Risk during WLT 1 Rationale / remark

UK [6] Working accidents 1 ∗ 10−6/a 4 : 100,000/ WLT Comparison with
everyday risks

Netherlands [5] Exposure to carcinogenic
substances 1 ∗ 10−6/a 4 : 100,000/ WLT Target risk, comparison

with environmental risks

ICRP [14] Exposure to radioactivity 1 ∗ 10−4/a 4 : 1,000/ WLT
Comparison with
accident frequencies in
high safety industries

Germany [1] Exposure to carcinogenic
substances 1 ∗ 10−6/a 4 : 100,000/ WLT

Valid from 2018 on; until
then the risk may be
4 : 10,000/ WLT

1 WLT = Working Lifetime = 40 years, assuming 8 hours of exposure per working day Grey-
shaded values are calculated from the originally published values

Table 2: Acceptance Thresholds for Working Activities in different countries

Country Regulated area Risk / year Risk during WLT 1 Rationale / remark

UK [6] Working activity
(accidents, radiation) 1 ∗ 10−3/a 4 : 100/ WLT Comparison with

everyday risks

Netherlands [5] Exposure to carcinogenic
substances 1 ∗ 10−4/a 4 : 1,000/ WLT Prohibitive risk

ICRP [14] Exposure to radioactivity 1 ∗ 10−3/a 4 : 100/ WLT
Comparison with
accident frequencies in
different industries

Germany [1] Exposure to carcinogenic
substances 1 ∗ 10−4/a 4 : 1,000/ WLT

Comparison with
accident frequencies in
different industries

1 WLT = Working Lifetime = 40 years, assuming 8 hours of exposure per working day Grey-
shaded values are calculated from the originally published values

Table 3: Tolerance Thresholds for Working Activities in different countries

From Table 2 and Table 3 we note that 1 ∗ 10−6/a is a commonly agreed value for
the broadly acceptable risk and 1 ∗ 10−4/a for the tolerable risk. The UK-values and
radiation protection for tolerable risk limits are an exception, possibly also due to mutual
cross references between the HSE and ICRP publications in the past. Same holds for the
OSHA value for “significant risks”. Although HSE states that “[in] practice the actual
fatality rate for workers in even the most hazardous industries is normally well below the
upper limit of a risk of death to any individual of 1 in 1000 per annum for workers. . . ”
and ICRP refers to the level of natural radiation for justification (see Table 4) we don’t
agree with 1 ∗ 10−3/a as tolerable limit. 1 ∗ 10−6/a can be adopted as reference value for
acceptable risk (it should not be called “de minimis”, however, as FDA did – it is just
acceptable, see chap. 2 above). Again we consider the value of ICRP for acceptable risk
in radiation protection as considerably too high.

3.2 General population

For the general population, benchmark-setting for acceptable and tolerable risks is more
difficult: One has to consider different sensitivities, typically for elder people or children
with special sensitivity to genotoxic carcinogenic substances. People must be protected,
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but it is a difficult and ongoing process to establish an agreement on the “values of society”
[8]. How can we handle this situation?

We all are exposed e.g. to man-made pollution of air, water or soil which are not at-
tributable to a specific single source or to radioactivity of natural origin. In Germany,
e.g., the risk of the general population for contracting cancer by the seven most impor-
tant airborne environmental carcinogens is about 10:10,000 (1.5 ∗ 10−5/a of Lifetime) for
urban population and 2:10,000 (3 ∗ 10−6/a of Lifetime) for rural population [1]. A value
of 4:10,000 for exposure to multiple substances is intended as a first step of minimizing
the risk caused by carcinogenic air pollutants [12].

Different benchmarks can be discussed to define suitable thresholds. The maximum per-
mitted concentrations of carcinogenic substances are usually regulated by several govern-
ment standards concerning food and environmental matters. “These concentrations have
not always been stipulated with respect to an acceptable risk; however, their calcula-
tion corresponds to the following risks that are related to the lifetime . . . of the general
population” [1] and are shown in Table 4:

Exposure by Risk/ year Risk during LT 1

Arsenic in drinking water (10µg/l) 7 ∗ 10−6/a 5 : 10,000/ LT
Dioxin in food (2pgTeq/kg) 4 ∗ 10−6/a 3 : 10,000/ LT
Diesel soot (5ngBaP/m3) 3 ∗ 10−6/a 2 : 10,000/ LT
Cadmium in airborne particles 3 ∗ 10−7/a 2 : 100,000/ LT
Natural radiation dose 1.4 ∗ 10−5/a 1 : 1,000/ LT
1 LT = Lifetime = 70 years

Table 4: Risks due to maximum permitted concentrations of carcinogenic substances /
natural radioactivity (Germany; [1])

Our daily risks might be remarkably higher if we go by car or spend our leisure time with
mountain-climbing and show a large variability:

For the general population, values for acceptable risks have been also defined in different
regulations:

With regard to tolerable risk it is necessary to consider not only individual risks (Table
7), but also to consider societal risks, due to the fact that major accidents of a plant can
affect many persons.

We understand collective or societal risk as the total risk for the sum of all affected persons
in the considered scenario. In contrast to the individual risk, the collective risk involves the
total number of all possible victims. In this view, an event with many fatalities is stronger
weighted than an event with fewer fatalities. To quantify the collective risk, the so-called
F-N curves became largely accepted. They are based on the equation F (N) = C/Nα.
Here, F (N) represents the corresponding frequency with a number of N or more fatalities.
C is an absolute term that defines the overall position of the F-N curve for N = 1 and
corresponds to the individual risk. The so-called risk aversion factor α allows to represent
the fact that an event with many victims is less accepted or tolerated the more fatalities
could occur [16]. Figure 2 shows two representative examples of F-N-curves from the
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Cause / Activity Risk of fatalities per year

Railway 4.4 · · · 15 ∗ 10−6/a

car drivers 2.0 · · · 2.2 ∗ 10−4/a

tr
affi

c
Aircraft (passengers) 0.67 · · · 1.2 ∗ 10−4/a

Mountain climbing 1.0 · · · 2.7 ∗ 10−3/a

Parachouting (USA) 2.0 ∗ 10−3/a

Le
is
ur
e
ac
ti
vi
ti
es

Holiday (UK 1990) 1.0 ∗ 10−4/a

Fire in buildings 8.0 ∗ 10−6/a

Household activities 1.0 ∗ 10−4/a

E
ve
ry
da

y
lif
e

Lightning (UK, USA) 1.0 · · · 5.0 ∗ 10−7/a

Table 5: Examples for risks of the general population [16]

Country Regulated area Risk / year Risk during LT 1 Rationale / remark

UK [6] Exposure to radioactivity 1 ∗ 10−6/a 7 : 100,000/ LT No other risks causing
cancer

Netherlands [5] Exposure to carcinogenic
substances 1 ∗ 10−8/a

1 : 1,000,000/
exposure time Negligible risk

ICRP [14] Exposure to radioactivity 1 ∗ 10−5/a 7 : 10,000/ LT Comparison with traffic
accident frequencies.

Germany [11, 1] Exposure to carcinogenic
substances 1 ∗ 10−6/a 1 : 100,000

acceptable risk for a
graduated reduction of
environmental
concentration values

1 LT = Lifetime = 70 years; for Netherlands 100 years for environmental exposure are assumed
Grey-shaded values are calculated from the originally published values

Table 6: Acceptance Thresholds for General Population in different countries

UK and the Netherlands. The transition area (or ALARP region, see Figure 1) between
acceptable and tolerable risk covers two orders of magnitude. Other F-N-curves as they
are used in Hong Kong or Switzerland are included in these examples.

It should be noted no risk aversion is taken into account in the UK and in Hong Kong,
whereas in the Netherlands and Switzerland a risk aversion factor of two is used. In our
opinion there is definitely a risk aversion in the society. We propose to use a risk aversion
factor of 1.5 to find an agreement.

The colors used in Figure 3 can be understood as follows (for general population, the
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Country Regulated area Risk / year Risk during LT 1 Rationale / remark

UK [6] Plant safety, radiation 1 ∗ 10−4/a 7 : 1,000/ LT Fatalities due to
accidents

Netherlands [5] General population
(carcinogenic substances) 1 ∗ 10−4/a

1 : 1,000,000/
exposure time Maximum tolerable risk

ICRP [14] General population
(radiation protection) 1 ∗ 10−4/a 7 : 1,000/ LT

Comparison with
environmental risks and
their spread

1 LT = Lifetime = 70 years; for Netherlands 100 years for environmental exposure are assumed
Grey-shaded values are calculated from the originally published values

Table 7: Tolerance Thresholds for General Population in different countries (individual
risk)
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Figure 2: Examples for societal risk criteria in a) United Kingdom (Transport of hazardous
goods) and b) the Netherlands (Hazardous facilities) [2]

value for 1 fatality is given):

As can be seen from Table 8, the risk values between OHS and general population differ
just by one order of magnitude. This shall reflect the fact that it is debatable whether
there should be really a difference in acceptance or tolerance thresholds for workers and
the public. If negligible risks shall be also discussed, these values should be below 10−7/a
for OHS and below 10−8/a for the general population. A tolerable risk limit of 10−3/a as
used by ICRP for OHS in radiation protection seems not to represent the state of the art,
however.

Our criteria are based on existing criteria used in different countries in different industrial

143



12th International Probabilistic Workshop

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Fr
eq

ue
nc

y o
f >

N 
fat

ali
tie

s 
pe

r y
ea

r

Fatalities, N
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Fatalities, N

b)a)

Figure 3: Societal risk criteria proposed by TÜV SÜD related to a) General population
and b) OHS.

Risk value [1/a]

OHS General
population

Evaluation

> 10−4 > 10−5 The risk is unacceptable high. Risk reduction measures have to be initiated immediately.

10−5 to 10−4 10−6 to 10−5

The risk is high and it is located in the upper ALARP region. The implementation of well-
known risk-reducing measures is highly recommended and it is advised to look for
additional risk-reducing measures beyond state of the art.

10−6 to 10−5 10−7 to 10−6

The risk is tolerable and in the lower ALARP region. If further measures to reduce the risk
are known, they can be examined under cost-benefit aspects. A recommendation to
implement such measures is not pronounced.

< 10−6 < 10−7 The risk is acceptable. There is no action necessary from risk-oriented point of view.

Table 8: Individual risk criteria proposed by TÜV SÜD

sectors and represent the state of the art. We have often used these criteria successfully
for different risk analyses and we found that they are in true sense “broadly accepted”.
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Abstract. Thermal actions are decisive for the reliability analysis of statically in-
determinate bridge systems, e.g. frame bridges. According to DIN EN 1991-1-5/NA
(EC1/NA) [3] temperature effects on the superstructure can be split into constant
temperature changes (TN,exp; TN,con) as well as temperature differences (TM,heat; TM,cool)
between the top and bottom of the superstructure and considered separately. Non-linear
effects TE and horizontal temperature differences between the sides of the bridge will
be left unconsidered. For constant temperature changes the shade air temperature
has a strong influence. Based on climate data from the past 136 years in Germany
probability distribution functions (PDF) for shade air temperatures as well as for
constant temperature changes are developed which can be used for reliability analysis.
For the evaluation of PDFs of temperature differences measurements are carried out
over more than six years in a box girder bridge in Hesse. Both – constant temperature
changes and temperature differences – correlate to a regression curve which is given in
this paper and is suitable for reliability analysis.

Keywords: thermal actions, box girder brides, prestressed concrete, reliability
analysis

1 Introduction

1.1 Bridge analysis

Thermal actions are of great importance for design and probability analysis of statically
undetermined bridge systems, e.g. continuous beam and frame bridges. Until the 1970’s
the influence of thermal actions on the superstructure has not been taken into account for
bridge design in Germany. Without considering the thermal actions in design, the existing
prestressed concrete bridges which were built until the 1970’s show a lower than designed
lifetime under combined traffic and temperature loading. High fatigue stresses in the
pre-stressing steel and the reinforcing steel often occur in these bridges. To evaluate the
lifetime of the existing bridges an exact approach for thermal actions should be taken into
account. For the accurate evaluation of the existing bridges a full probability analysis
is recommended. The detailed probabilistic modelling of thermal actions as well as of
other actions is therefore needed. Since the late 1970’s the values of thermal actions were
investigated, see [9, 8, 6, 4]. Additionally the combination of thermal and other actions
were analysed in [4, 5], which were the basis of the actual design code DIN EN 1991-1-5
(EC1) “Actions on structures – Part 1-5 – General actions – Thermal actions” [3].
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1.2 Thermal actions

Thermal actions lead to dilatation or contraction of whole structures or parts of structures
e.g. carriageways. According to EC1 [2] these temperature effects on bridge decks can be
split into four parts and analyzed separately:

• Constant temperature changes ∆Tu. The maximum temperature change is ∆Tu =
∆TN,exp, the minimum temperature change is ∆Tu = ∆TN,con (see Eq. (1) - (3))

• Horizontal, linear temperature changes ∆TMy

• Vertical, linear temperature changes ∆TMz or ∆TM. In case the top of the bridge
deck is warmer than the bottom the maximum value is ∆TMz = ∆TM,heat, in case
the bottom of the bridge deck is warmer than the top the extreme value is ∆TMz =
∆TM,cool

• Nonlinear temperature effects ∆TE

Center	  of	  gravity 

Figure 1: Temperature effects according to EC1 [2], Bild 4.1

According to EC1, 6.1.4.3(1) [2], horizontal, linear temperature changes ∆TMy in most
cas-es can be left unconsidered. Additionally nonlinear temperature effects ∆TE will be
left disregarded in compliance with EC1/NA, NDP to 6.1.2(2) [3].

∆Tu = Te − T0 (1)

∆TN,exp − T0 (2)

∆TN,con = Te,min − T0 (3)

with
T0 = setting up temperature of a structure
Te = constant temperature of a structure
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2 Constant temperature changes

2.1 General

Constant temperature changes influence the bridge expansion and shortening which is de-
cisive for the design of bridge bearings and expansion joints. For integral bridges, thermal
expansions and shortenings determine the earth pressures at the abutments which have a
strong impact on the probability analysis of the substructures as well as of the superstruc-
ture. According to [7] constant temperature changes in bridge decks are caused by the
following effects:

• Air temperature changes

• Wind speed

• Global solar radiation as well as absorption ability of the material

Germany has a moderate or oceanic climate affected by the Atlantic Ocean and the Gulf
Stream, which helps to sustain somewhat stable and significant higher temperatures than
expected in this latitude throughout the year. The prevailing winds are from the west,
summers are warm (but not hot) and winters are cool (but not cold). The hours of
sunshine in 2013 varied from 1364 hours in Thuringia to 1696 hours in Mecklenburg-
Vorpommern according to the Deutscher Wetterdienst DWD (German Weather Service).
Several publications show that constant temperature changes are mostly affected by air
temperature changes ([9, 7]).

2.2 Shade air temperature

Shade air temperatures in Germany are measured continuously by the DWD and are
avail-able since 1876. Fig. 2 shows the location of the weather stations of the DWD
(green and white spots). Biased locations (white spots exposed mountains and open sea)
haven’t been analyzed, because their extreme weather conditions aren’t representative
for Germa-ny. In this research daily maximum and minimum values of the shade air
temperature giving a total of 3,104 million values have been evaluated.

Normal PDFs have no constraints while for probability analysis the knowledge of
the minimum and maximum values is compulsory. In Tab. 1 extreme air shade
temperatures are displayed. It can be seen that the shade air temperatures vary between
37, 8◦C and 40, 2◦C. Further analysis has shown that extremely deep temperatures below
30◦C (reached in a total of 9 days in different spots) have a much lower probability of
occurrence than 50 years, which is often referred to in design codes e.g. DIN EN 1990
(EC0) [1]. The lowest shade air temperature 37, 8◦C measured in Hüll (part of Wolnzach
north of Munich) has to be regarded as a single and not representative event. Therefore
the shade air temperature range is set according to Eq. (4), which is also concluded by
[5, 7]. The analyzed maximum shade air temperature Tmax is slightly higher (+3 K) and
the minimum shade air temperature Tmin is reasonably lower (-6 K) than the minimum
characteristic value in Eq. (5) according to EC1 [2].

Tmin = −30◦ ≤ T ≤ 40◦ = Tmax (4)
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Tmin,EC1 = −24◦ ≤ T ≤ 37◦C = Tmax,EC1 (5)

Location Date Shade air temperature T
Karlsruhe 2003-08-13 40, 2◦C
Karlsruhe 2003-08-09 40, 2◦C
Freiburg im Breisgau 2003-08-13 40, 2◦C
Gärmersdorf/Oberpfalz 1983-07-27 40, 2◦C
Bamberg 1956-02-10 −30, 1◦C
Görlitz 1956-02-09 −30, 8◦C
Hüll (Wolnzach) 1929-02-12 −37, 8◦C
Munich 1942-01-21 −30, 5◦C
Nuremberg 1956-02-10 −30, 2◦C
Oberstdorf 1956-02-10 −32, 0◦C
Straubing 1963-01-18 −32, 0◦C
Weiden 1956-02-10 −32, 8◦C

Table 1: Extreme shade air temperatures T of Germany (data by DWD)

The following Fig. 3 shows the histogram and normal PDF of the shade air temperature
data of all analyzed weather stations while Fig. 4 shows the histogram and normal PDF of
the northern, eastern, western and southern federal states of Germany, which are assigned
according to Tab. 2. All PDFs are best fit curves of the extreme ranges of the histograms,
as these ranges determine the risk of failure in reliability analysis. It can be seen that the
various distribution curves in Fig. 4 show only neglectable differences of the mean value
µ and standard deviation σ. For further analysis the distribution curve of Fig. 3 is being
used.

northern part eastern part western part southern part
Lower Saxony Brandenburg North-Rhine- Baden-Württemberg

Schleswig-Holstein Berlin Westphalia Bavaria
Hamburg Thuringia Rhineland-
Bremen Saxony Palatinate

Mecklenburg-

Vorpommern
Saxony-Anhalt Saarland

Hesse

Table 2: Parts of Germany

2.3 Constant temperature changes in bridges

As stated in chapter 2.1 constant temperatures in bridge superstructures are influenced by
the shade air temperature, solar radiation and wind speed. The effects of solar radiation
and wind speeds have been well examined in simulations carried out by [7] and as a result
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Figure 2: German weather stations of the Deutscher Wetterdienst

a correlation between the minimum Tmin shade air temperature and the minimum Te,min

constant bridge temperature as well as the maximum Tmax shade air temperature and the
maximum Te,max constant bridge temperature has been published, which is expressed in
Eq. (6) and Eq. (7) as well as displayed in Fig. 5. Fig. 6 shows the developed histogram
and normal PDF of the constant temperature Te in bridge superstructures which is the
best fit curve of the extreme ranges of the histograms, as these ranges determine the risk
of failure in reliability analysis.

Te,max = Tmax − 2K = 40◦ − 2K = 38◦ (6)

Te,min = Tmin + 5K = 30◦ + 5K = −25◦ (7)

The characteristic value of the correlation between the shade air temperature and the
constant bridge temperature in the current design code EC1 [3] is given in Eq. (8) and
Eq. (9):

Te,max,EC1 = Tmax,EC1 + 2K = 37◦C + 2K = 39◦C (8)

Te,min,EC1 = Tmin,EC1 + 8K = −24◦C + 8K = −16◦C (9)
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Figure 3: Histogram and normal PDF of the daily maximum and minimum shade air
temperatures T of Germany (climate data from the DWD)

Figure 4: Histogram and normal PDF of the daily maximum and minimum shade air
temperatures T of parts of Germany (climate data from the DWD)

It can be seen that the maximum constant temperature Te is almost the same value in
EC1 while the minimum temperature differs by -25 – (-16) = -9 K. [7] stated that this
differences are covered by the partial safety factor γ = 1, 35 in ultimate limit state.
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Figure 5: Correlation between the maximum shade air temperature T and the maximum
constant bridge temperature Te,max according to [7]

Figure 6: Histogram and normal PDF of the daily maximum and minimum constant
bridge temperatures Te

3 Vertical, linear temperature changes

3.1 Temperature measurements in a prestressed box girder bridge

Solar radiation plays a leading role for vertical, linear temperature changes in bridge decks
because the carriageway slab is covered by a layer of dark colored asphalt which absorbs
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the rays of light (see [5]). To analyze the vertical linear temperature changes a monitoring
system has been installed in a prestressed box girder bridge in the course of motorway
A7 near Eichenzell/Döllbach from August 2007 until September 2013. Two temperature
sensors were installed inside the concrete; one inside the carriageway slab and one inside
the bottom slab (see Fig. 7). Every hour the difference between the temperature of
the top and the bottom slab has been analyzed. It has been assumed, that the vertical
temperature change follows a linear distribution within the cross-section of the bridge,
which is in accordance with EC1/NA, NDP to 6.1.2(2) [3].

Figure 7: Cross section of the Döllbachtal Bridge (midspan)

In Fig. 8 the evaluation of the hourly temperature difference ∆TM between the top and
the bottom slab is shown. A maximum temperature difference ∆TM,heat = 8,0 K and
a minimum temperature difference ∆TM,cool = -2,2 K has been recorded over a period
of 6 years of observation. The lognormal distribution curve is chosen to reproduce the
extreme ranges of the histogram, as these ranges determine the risk of failure in reliability
analysis. The equation for the lognormal distribution curve is given in Eq. (10) - Eq.
(12). It is obvious that positive values are more likely to occur than negative values, since
solar radiation heats mainly the upper slab which has additionally a larger surface than
the bottom slab. For this reason an asymmetrical PDF has been chosen.

f(x) =
1√

2 · π · σu · (x− x0)
e

[
− 1

2

(
ln(x−x0)−mu

σu

)2
]

x > x0

0 x ≤ x0

(10)

mu = ln(µ− x0)−
(
σ2
u

2

)
(11)

σu =

√√√√ln

(
1 +

(
σ

µ− x0

)2
)

(12)

To get the extreme values of the vertical temperature differences [5] used the 3-day instead
of the hourly maxima and minima values. The effect of this assumption is shown in Fig.
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9. Extreme values have a significantly higher probability of occurrence than in Fig. 8,
because the smaller temperature differences within a 3-day observation period are left
unconsidered. For design purposes this is a safe assumption.

Figure 8: Histogram and lognormal PDF of the vertical linear temperature changes ∆TM

with hourly resolution

Nevertheless Fig. 8 and Fig. 9 show the results of only one single bridge. In order to find a
PDF for reliability analysis of concrete bridges, the evaluated extreme values are compared
with the values given in the actual design code EC1/NA [3]. The characteristic values
given in EC1/NA [3] take into account the thickness (6 cm) of the asphalt pavement
(value ksur = 0,94 for maximum temperature difference and ksur = 1,04 for minimum
temperature difference) and are presented in Eq. (13) and Eq. (14). It can be stated that
both PDFs in Fig. 8 and Fig. 9 are in accordance with the values given in EC1/NA [3].
The characteristic values in EC1/NA [3] take into account a return period of 50 years.
Based on the given results for probability analysis a lognormal PDF is recom-mended
with the following 2 % value ∆TM,cool and the 98% value ∆TM,heat, which represent a
50-years return period.

ksur ·∆TM,heat = 0, 94 · 10K = 9, 4K (13)

ksur ·∆Tm,cool = 1, 04 · (−5) = −5, 2K (14)

3.2 Correlation between vertical temperature difference and
constant temperature

As stated in chapter 2.1 constant temperatures of a bridge superstructure are influenced
by the shade air temperatures whereby according to chapter 3.1 the vertical temperature
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Figure 9: Histogram and lognormal PDF of the 3-day maxima and minima vertical linear
temperature changes ∆TM,heat and ∆TM,cool

differences are mainly influenced by solar radiation. Major positive vertical temperature
differences ∆TM,heat evolve from very high solar radiation during summer where high shade
air temperatures are more likely. Negative vertical temperature differences ∆TM,cool can
have many causes, e.g. cooling of the carriageway slab by snowfall or cold rain. The
correlation between the vertical temperature differences and the constant temperatures of
the Döllbachtal-Bridge is displayed in Fig. 10. The constant temperature was transformed
according to Eq. (6) and Eq. (7) from the shade air temperature of the nearest weather
station of the DWD in Gießen. The evaluated correlation coefficient ρTe,∆TM = 0,59 in
Fig. 10 can be used for reliability analysis.

4 Summary

In this paper the impact of thermal actions on bridge superstructures has been analyzed.
Based on the data of 65 weather stations of the DWD normal PDFs of the shade air
temperatures have been developed for Germany as well as for the northern, eastern,
western and southern parts of Germany. After that the PDF of the constant bridge
temperatures was deduced from the shade air temperatures. Furthermore temperature
measurements inside a prestressed box girder bridge have been evaluated statistically and
a lognormal PDF has been derived for the vertical temperature differences. It has been
stated that prolonged sampling intervals as were the basis of the actual design codes
EC1 [2] increase the probability of extreme values and lead to safe values for the design
of bridges. Finally, based on the measured values the correlation between the constant
temperatures and the vertical temperature differences has been determined. This research
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Figure 10: Correlation between the constant temperature Te and the vertical linear tem-
perature difference ∆TM
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department of Hesse (Hessen Mobil), Mr. Herbert Duda from the engineering office König
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Abstract. We discuss the inverse and ill-posed problem of identifying residual stresses in
steel structures. Therefore, steel specimen are subjected to thermal loadings. Due to these
loadings deformations occure which are recorded by high resolution laser scanners. The
latter serve as input for the inverse problem, where residual stresses are to be recovered.
As the inverse problem is ill-posed, it requires regularization, where iteratively regularized
fixed-point iterations are applied. Now the quality of the identified stress field depends
on a list of parameters, e.g., the choice of the regularization parameters, the noise in
the measurements, the error assumed for the definition of stopping criteria, and further
uncertainties in other model parameters, like the stiffness of the structure, the thermal
expansion coefficient or non-exact geometry.

1 Introduction and State of the Art

During the fabrication of metallic structures residual stresses occur due to the high thermal
excitation during the rolling and/or welding process. The residual stresses are generally
not known in their location and dimension, however, they lead to strong and un-wanted
distortions when the structures are loaded. Closely related to these distortions is the
question of the stability of the structure. It is therefore the aim, to reduce the defor-
mations by a process called thermal straightening. The success of this process heavily
depends on the prior knowledge of the location and size of the residual stresses. Till
know, this straightening process is only possible by well experienced specialists in the
field and under high costs. We therefore propose a procedure which allows by inverting
a thermo-mechanical problem the identification of the residual stresses and discuss the
robustness of the approach w.r.t. uncertainties in the model/experiments.
The solution of inverse problems in the context of partial differential equations allows the
reconstruction of distributed physical properties like material parameters or fields of pri-
mary or secondary variables, like the residual stresses. In this context, most of the inverse
problems are ill-posed, in particular as the stable dependency of the solution from the
given data cannot be guaranteed, [2]. The research activities in this field have formulated
a series of iterative algorithms to solve nonlinear ill-posed problems in a stable manner,
see e.g. [6, 7]. Their applicability to inverse problems in science and engineering has been
proved by, e.g. [4, 8, 9]. With respect to the identification of residual stresses there is a
set of theoretical investigations [10, 1, 5] and identification results via analytical methods
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[12, 13, 14] and numerical approaches [11, 3]. These works have in common that they are
solely formulated in a one field problem. Due to the special type of excitation (heating)
we are working in a two field area.

2 Thermo-Mechanical Model

The forward problem consists of a series of solution of thermo-mechanical boundary value
problems, where the heat source is successively shifted over the structure.

ρcT
∂T

∂t
−∇ · (κT∇T ) = 0 in Ω× (0, Tend] (1)

BT (c(Bu−mβTT )) = BTσeig in Ω× (0, Tend]

T (x, t) = T̄ (x, t) on Γ× (0, Tend]

T (x, t = 0) = t0(x) in Ω

u(x, t) = 0 on Γu × (0, Tend]

NTcBu = 0 on (Γ \ Γu)× (0, Tend]

with

T temperature
u displacements
cT heat capacity
ρ density
κT thermal conduction
βT thermal expansion
m m = (1, 1, 1, 0, 0, 0)T (unit vector)
c stiffness tensor
E Young’s modulus
ν Poisson ratio
B strain-displacements differential operator
n normal vector
N normal vector for vector fields
σeig residual stress

In the experiment an induction heating is considered. However, for the model, to simplify
things, the heat excitation is modeled as local surface load assumed to move along the
boundary of the structure at a set of discrete positionsM . All other parts of the boundary
are assumed to be observable by a thermo camera, i.e. why we consider solely Dirichlet
boundary conditions for the temperature field.
Mechanically, the structure is supported in two areas, see Figure 1.

The structure has dimensions of 2 m times 0.1 m times 0.05 m. The heat excited part
a length of 0.05 m. The support area is assumed to be 0.05 m, too. The material
parameters are as follows for the thermal field ρ = 7.85e3[kg/m3], cT = 465[J/kgK]
and κ = 50[W/mK] and for the mechanical field E = 210e3[MN/m2], ν = 0.31 and
βT = 12e− 6.
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Figure 1: Experimental Setup

The coupled forward problem is assumed to be well-posed by the given initial and bound-
ary conditions. A decomposition of the problem in Eq. 1 leads to a heat equation
problem with well defined and compatible initial and boundary conditions. The com-
puted temperature field is assumed to have T ∈ L∞(0, T,H1(Ω)) regularity. It enters into
the mechanical problem as a source term in Eq. 2, which can also be considered to be
well-posed.

3 The Inverse Problem

We introduce the following forward operator

F : X → Y (2)
σeig 7→ u

which maps residual stresses σeig to measured displacements u along the boundary Γ = ∂Ω
of Ω. For X we assume H1(Ω) and for Y ⊆ L2 ((Ω)× [0, T ]), i.e. the inverse problem
of identifying residual stresses is as ill-posed as one time numerical differentiation. The
solution of the nonlinear problem

F (σeig) = umeas(x, t)

is consequently expected to be ill-posed. The residual stresses are identified by running a
derivative-free iteratively regularized Landweber Method

σeig,k+1,δ = σeig,k,δ + sG∗(F (σeig,k,δ)− yδ)− αkσeig,k,δ

where s is a well-chosen scaling parameter, G is a locally uniformly bounded operator
mapping from X to Y and αk a series of regularizing parameters. For the latter it is
guaranteed, that

lim
k→∞

αk+1

αk
= 0.

The yδ denotes the collection of measured data which are assumed to contain noises which
is indicated by the superscript δ. In order to avoid an amplification of noise components
in the data, the iterations are stopped according to a discrepancy principle, i.e. when for
the first time

||F (σeig,k+1,δ)− yδ||Y ≤ τδ
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Variable Parameter Assumed Distribution
δ true systematic noise LN (−4.1, 0.6)
δassumed assumed systematic noise (δassumed − δ)∆ ∼ U(−0.5; 0.5)
α0 initial value of regularizing parameter LN (−1.5, 0.4)
E Young’s modulus N (210e+ 03, 0.08 ∗ 210e+ 03)
βT thermal expansion N (12e− 06, 0.08 ∗ 12e− 06)

Table 1: Table of assumed distributions. LN - Log-Normal, N - Normal, U - Uniform.

with τ > 1 and an upper bound δ of the discrepancy between noisy data yδ and true
solution y, i.e. ||y − yδ|| ≤ δ. The true solution is assumed to be obtained from a model
fitting 100 percent to the given measurements, an unrealistic situation, though. In the
numerical implementation G interpolates in a Finite Element Analysis the nodal values
of the displacements to the element mid points values.

3.1 Ill-Posedness

The iterations σeig,k converge to σeig,∗ in the noise free case with the choice α = 0.
For already very small noise, slightly more than in the magnitude of 1 per mill of the
measured displacements, the solution process becomes unstable, see Figure 2c) and 2d),
where the graphs show the convergence in X and Y space for noisy data with and without
regularization. Including the proposed regularizing term, i.e. αk 6= 0 and early stopping
makes the method robust (see 2a) and 2b) ) even for noise levels in the range of 5-10
percent.

4 Uncertainty Analysis

In the sequel we study how different uncertainties in the model and in the algorithmic
setup affect the quality of the reconstructed residual fields. We assume, that the following
material parameters, boundary conditions and algorithmic parameters are not precisely
known and model them therefore as random variables according to the given distributions.

We will now run a series of inverse problems, where key parameters are assumed to be
random.

4.1 Systematic Noise

In the theory of inverse and ill-posed problems all data are expected to be contaminated
with a systematic noise, where generally estimates like

||y − yδ||Y ≤ δ

are assumed. The δ measures the distance in Y norm between the true, i.e. the model
responses y and the contaminated data yδ. This contamination may have different sources:
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a) b)

c) d)

e)

Figure 2: Convergence in X and Y space: a, b) with regularization, c), d) without reg-
ularization, Assumed data noise 2%, e) assumed form of residual stress in x-
direction.
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First, there are errors or uncertainties in the measurements which may have a systematic
or random behavior, often a combination of both. Second, model and measurements can
never be validated to 100 %, e.g. due to abstractions in the model used. Thus, the
systematic error is on the model side and is understood to be the model uncertainty.
While generating our synthetic measurements, by forward simulations, we add for every
solution of the inverse problem systematic noise according to the distributions given in
Table 1. In theory, stopping criteria are formulated in terms of this noise level, i.e.

||F (σ)− yδ|| ≤ τδ

with τ > 1. Here, the engineer or the person experienced with the model may generate
a good estimate on the true systematic error, however, this is only an estimate, which in
unfortune cases may vary from the real systematic error. If the assumed noise level, let
us denote this with δassumed is too large, iterations might be stopped to early, reducing
the quality of the identified quantitiy. If δassumed is too small, the stopping might become
active rather late leading to unstable iterations and probably large identification errors.
So we will model the true δ and the assumed δassumed as two random variables which are
correlated to 70%.
Additionally, as we implemented an iteratively regularizing fixed-point method, the ques-
tion arises, how the initial choice of the regularization parameter α effects the results. We
assumed that the initial α follows a log-normal distribution with parameters as in Table 1.
During the iterations the regularization parameter is successively reduced as αk+1 = cαk
with c = 0.95.

4.2 Randomness in constitutive parameters

Besides systematic errors we find random errors in particular in the assumed material
properties. The question of interest is, to which extend do wrong assumption in the
material properties lead to a reduction of the accuracy of the identified parameters. Ex-
emplarily, we treat the variables of the mechanical problem as random, i.e. the Young’s
Modulus and the thermal expansion coefficient. Both variables are modelled to follow a
normal distribution with a scatter of 8% coefficient of variation.

5 Results

The following scatterplots (Figure 3) visualize the relation between the reconstruction
error and the different random input quantities for the inverse problem discussed.

From the results we can conclude that the reconstruction error, which is a quality measure
of the identified stress field, is visibly depending on the number of iterations, see Figure 3a.
This number is however depending through the discrepancy principle on the noise level
assumed, so it supports the message which can be drawn from Figure 3d. The initial value
of the regularization parameter seems to have nearly no influence on the reconstructed
stress field see Figure 3b. The rather similar plots in 3c and 3d are due to the fact that
for δ and δassumed a correlation value of 70% is assumed. For other situations, there might
be more uncertainty on the true level of systematic noise.
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a) b)

c) d)

e) f)

Figure 3: Statistical Analysis. The quality of the reconstructed stresses in dependency of
a) the number of iterations, b) the initial value of the regularizing parameter, c)
the true systematic error, d) the assumed systematic error δassumed, e) variations
in the thermal expansion coefficient, f) variation in Young’s modulus.
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From the material parameters, variations in the thermal expansion coefficients have a
visible impact on the reconstruction error, while those of the Young’s modulus not, see
Figure 3e and 3f. Note, that these results can only by generated in this academic example
where the true stress field is known. In applications, this is of course not the case and
we therefore regard additionally the dependency of the residuals on the different input
parameters.

The results of the scatterplots in Figure 4 reveal now the relation between the residuals,
i.e. the discrepancy between measurements and simulation, and the different random
input quantities. It is clear from theory and implementation that the residuals strongly
correlate with the number of iterations and the assumed systematic error, see Figures 4a
and 4d. This is also an indicator that the regularisation strategy is working properly as
a high number of iterations is only allowed in situations of little systematic noise. From
the randomness in material parameters, the thermal expansion has visible effects on the
residuals. As in the previous results, also the scatter of α0 and E do not seem to be
influential.

6 Conclusions

A probabilistic analysis of the outcome of an inverse and ill-psed problem helps to detect
the sources of uncertainty which may deteriorate the quality of identification results. It is
therefore an important step in both model and experimental revision in order to further
improve identification results.
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a) b)

c) d)

e) f)

Figure 4: Statistical Analysis. The quality of the residuals in dependency of a) the num-
ber of iterations, b) the initial value of the regularizing parameter, c) the true
systematic error, d) the assumed systematic error δassumed, e) variations in the
thermal expansion coefficient, f) variation in Young’s modulus.
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Abstract. In this paper, design optimization of a shallow arch is performed using the
density-based topology optimization method. The design obtained by classical topology
optimization is highly sensitive to geometric imperfections when geometric nonlinearity
is taken into account. A robust approach to topology optimization is therefore developed
in order to find a design that is both efficient and robust.

A Total Lagrangian formulation for large displacements is adopted in order to incorporate
geometric nonlinear effects in the topology optimization problem. Robust optimization
is considered within a probabilistic framework: geometric imperfections in the design
domain are modeled by a vector-valued Gaussian random field, and the variability of the
performance is accounted for by minimizing a weighted sum of the mean and standard
deviation in the robust optimization problem. During the optimization process the robust
objective function is approximated by a second-order perturbation method in order to
avoid multiple calls to the nonlinear finite element solver per design iteration.

1 Introduction

Topology optimization [6] is a powerful tool which has been used in various fields of
application including civil engineering. The design obtained by classical topology op-
timization usually forms a very efficient solution for the specific problem at hand. In
practice, however, its performance might be strongly reduced because of the uncertain
variations inevitably present in the system. In robust optimization, these uncertainties
are taken into account in order to find designs which are both efficient and robust. Dif-
ferent sources of uncertainty relevant to civil engineering have been considered in robust
topology optimization including variable loads (e.g. [4, 8, 14]), uncertain material prop-
erties (e.g. [2, 12]), and geometric imperfections (e.g. [11, 17, 23, 28]).

This paper focuses on robust topology optimization while taking into account geometric
imperfections. Imperfections are an important source of uncertainty in many design prob-
lems, especially when considering the structural stability and other geometric nonlinear
effects. In accordance with the literature on topology optimization of geometric nonlinear
structures [9, 10], this work incorporates geometric nonlinear phenomena in the opti-
mization by means of a Total Lagrangian formulation for large displacement mechanics.
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Furthermore, while several paradigms to robust optimization exist in the literature [7], a
probabilistic approach is adopted in this work: probability distributions are attributed to
the uncertainties and the robust performance of a design is assessed in terms of stochastic
moments such as the mean and standard deviation. A stochastic perturbation method
is developed in order to avoid the necessity of solving multiple instances of the nonlinear
equilibrium equations in the robust optimization.

The remainder of this paper is organized as follows. Topology optimization of structures
exhibiting geometric nonlinearity is treated in the following section. This method is
used in the optimization of a shallow arch whose nominal design turns out to be very
sensitive to geometric imperfections. The paper then proceeds with the robust approach
to topology optimization: a probabilistic random field model for geometric imperfections
is presented, the robust optimization problem is formulated, and a solution strategy based
on the stochastic perturbation method is developed. Finally, it is demonstrated how an
alternative robust design for the shallow arch can be obtained by means of the robust
approach.

2 Topology optimization

2.1 Density based topology optimization

The goal of topology optimization is to find the best material distribution in a design
domain Ω for a given set of constraints and boundary conditions. In the optimization of
mechanical problems, the design domain Ω is discretized by means of ne finite elements.
The structure is parameterized by assigning a physical material density ρ̄e to every element
in the design domain [6]. The volume densities indicate whether material is present
(ρ̄e = 1) or absent (ρ̄e = 0). The volume fraction of the design domain occupied by the
structure is therefore expressed as:

V =
1

VΩ

ne∑

e=1

veρ̄e (1)

where ve is the volume of element e and VΩ =
∑ne

e=1 ve is the volume of the design domain.
Since the volume densities are continuous optimization variables, efficient gradient-based
optimization algorithms can be used to solve the topology optimization problem. However,
intermediate densities (0 < ρ̄e < 1) usually lack a physical interpretation and should be
avoided in the optimized design. In the Solid Isotropic Material with Penalization (SIMP)
method [5, 22], intermediate densities are therefore penalized in the stiffness interpolation:

Ee = Emin + (E0 − Emin) ρ̄pe (2)

where E0 and Emin are the Young’s moduli of the material and void phase, respectively.
Intermediate densities are made inefficient by selecting the penalization parameter p > 1.

Projection filters [16, 24, 30] are used in this paper in order to avoid mesh dependence of
the solution and restrict the complexity of the optimized design. The vector of physical
densities ρ̄ is therefore defined as a function of a new set of design variables ρ ∈ Rne in
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two steps. The design variables ρe are first smoothed by a density filter to obtain the
intermediate densities ρ̃e:

ρ̃e =

∑ne

i=1 κeiviρi∑ne

i=1 κeivi
, κei = max(R− ‖xe − xi‖2, 0) (3)

where xe are the coordinates of the center of element e and the filter radius R is related
to the desired minimum length scale in the structure.

The smoothing operation (3) removes rapid variations in the design variables, but also
introduces unwanted gray transition zones between material and void phase. Gray ele-
ments are removed in the second step by projecting the intermediate variables ρ̃e using a
regularized Heaviside function [16, 28]:

ρ̄e =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1− η))
(4)

where the parameter β determines the steepness of the function and η ∈ [0; 1] is the
threshold value of the projection.

In this paper, the optimization problem is expressed in the form of minimum compliance
where the goal is to find the design which minimizes the work done by external forces for
a limited amount of material:

min
ρ

f(ρ) = PTu(ρ)

s.t. V (ρ)− Vmax ≤ 0 (5)
0 ≤ ρ ≤ 1

where the volume fraction V (ρ) of the design is limited to a certain value Vmax. The
nodal load vector P contains the discretized external forces. The nodal displacements u
of the design are determined by means of a finite element analysis. When small strains
and displacements are assumed, this amounts to solving the following linear system:

gl (ρ,u) = K(ρ)u−P = 0 (6)

The linear stiffness matrix K(ρ) is assembled from the element stiffness matrices Ke(ρ) =
Ee(ρ)K0

e where K0
e is the element stiffness matrix for unit-stiffness.

In order to incorporate geometric nonlinear effects such as buckling and P −∆ effects, a
Total Lagrangian formulation for large displacements is adopted in the following. In this
case, the equilibrium equations are written as:

gnl (ρ,u) = R (ρ,u)−P = 0 (7)

The internal force vector R is expressed as the following integral over the reference con-
figuration of the domain:

R (ρ,u) =
ne∑

e=1

Ee(ρ)

∫

Ωe

BT(u)C0E(u) dΩ (8)
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where E is the Green-Lagrange strain vector, B is the strain increment matrix and C0 the
elastic constitutive matrix for unit-stiffness. The reader is referred standard textbooks
[29, 31] for more detailed information on this formulation.

Equation (7) is solved by means of the Newton-Raphson method during the design opti-
mization, i.e. the nonlinear displacements for a particular design ρ are determined itera-
tively by solving a number of local linearizations of the nonlinear system (7):

KT(ρ,u(k))∆u(k) = −gnl(ρ,u
(k)) (9)

where ∆u(k) = u(k+1)−u(k) is the displacement increment and the tangent stiffness matrix
KT is defined as the Jacobian of R:

KT(ρ,u) =
∂R(ρ,u)

∂u
(10)

In a nonlinear setting, the objective function f = PTu no longer corresponds to the
external work and is commonly referred to as the end-compliance [10]. In the following,
nonlinear end-compliance is denoted by fnl and linear compliance by fl.

2.2 Shallow arch

The methodology described in this paper is illustrated in the design of a shallow arch.
The design domain and boundary conditions for the problem are shown in figure 1a. The
design domain, which spans an angle α = 30◦ with an inner radius Rin = 100 m, outer
radius Rout = 104 m and out-of-plane thickness t = 1 cm, is discretized by 800× 60 finite
elements. The properties for the material phase are a Young’s modulus E0 = 200 GPa
and a Poisson’s ratio ν = 0.3. The stiffness of the void phase is set to Emin = 10−9E0.

The geometric complexity of the design is limited by means of the projection filter (3)–(4)
with a filter radius R = 0.25 m, a projection threshold η = 0 for a minimum length scale
in the material phase, and a maximum steepness β = 32. As is common in topology opti-
mization of geometric nonlinear problems [10], a continuation scheme on the penalization
parameter p in the SIMP law (2) is used. The maximum penalization is set to p = 8
in order to ensure convergence to nearly discrete designs with the current filter specifica-
tions. The design is optimized for minimum end-compliance in case a load P = 800 kN is
applied and the volume fraction of the design is limited to Vmax = 30 %. The optimiza-
tion is performed numerically by means of the method of moving asymptotes [26]. The
optimized design is shown in figure 1b.

The stability and nonlinear performance of the design is investigated in the following.
The load-displacement curve for the center of the arch at the location of the point load is
shown in figure 2a. The equilibrium path is traced using an arc-length algorithm with an
orthogonal hyperplane constraint [19]. On the primary equilibrium path, the structural
response is initially linear until a limit point is reached at P = 3628 kN which corresponds
to a snap-through of the arch (fig. 2b). The limit point clearly occurs at a much larger
load level than the design load considered in the optimization and so it poses no direct
harm for the stability of the design. However, the load-displacement curve of the nominal
design also shows an unstable bifurcation point at a much smaller load P = 1275 kN
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Figure 1: Topology optimization of a shallow arch: (a) design domain and boundary con-
ditions, and (b) optimized nominal design.
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Figure 2: Nonlinear analysis of the nominal arch design: (a) load-displacement curve of the
nominal design: the primary path ( ) of the perfect nominal design contains
a limit point ( ) and unstable bifurcation point ( ) with bifurcation path ( ).
The limit point corresponds to the snap-through depicted in figure (b) and the
bifurcation point to the asymmetrical bifurcation mode in figure (c). The load-
displacement curve ( ) of the imperfect design in figure (d) is also shown.

as indicated by the dashed line in figure 2a. The corresponding nonlinear bifurcation
mode (fig. 2c) is characterized by asymmetric buckling of the outer beams. The stability
analysis of the design also has implications on its robustness: the design is particularly
sensitive to asymmetric imperfections associated with the unstable bifurcation, even at
load levels well below the critical load level. This is illustrated by considering a slightly
imperfect design (fig. 2d). The load-displacement curve for this imperfect version is shown
as the gray line in figure 2a: the displacements are much larger and the response is clearly
nonlinear at load levels far below the critical load.
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3 Geometric imperfections

In a probabilistic framework, uncertainties are treated as random variables which are
denoted as functions of the probabilistic elementary event θ of the event space Θ.

Geometric imperfections are modeled as a zero-mean Gaussian random field p(x, θ) :
Ω × Θ → Rn. The random imperfections p(x, θ) are added to the coordinates x of the
nominal design:

x̃(x, θ) = x + p(x, θ) (11)

where x̃(x, θ) are the uncertain material coordinates of the imperfect design. A Gaussian
random field is fully characterized by its mean function mp(x) and covariance function
Cp(x,x′):

mp(x) = E [p(x, θ)] = 0 (12)
Cp(x,x′) = Cov [p(x, θ),p(x′, θ)]

= E
[
(p(x, θ)−mp(x)) (p(x′, θ)−mp(x′))

T
]

(13)

where E is the expectation operator. The components of the random vector p(x, θ) are
assumed to be uncorrelated in the present study which enables the following representation
of the covariance function:

Cp(x,x′) =

[
Cp1(x,x

′) 0
0 Cp2(x,x

′)

]
(14)

A squared exponential covariance function is used for the covariance function Cpi of
component pi of the random vector:

Cpi(x,x
′) = σ2

pi
exp

[
−
((

x− x′
lcx

)2

+

(
y − y′
lcy

)2
)]

(15)

where σpi is the standard deviation of the component pi of the random field, and lcx and
lcy are the correlation lengths of the random field in the directions x and y, respectively.

In the shallow arch problem, the horizontal and vertical components of imperfections are
initially described by stationary random fields pi(x, θ) with squared exponential covariance
function (15) with σpi = 0.33 m and lcx = lcy = 17.45 m. Furthermore, it is assumed
that the structure is placed correctly on the supports, i.e., the geometric imperfections are
zero at the location of the supports. Conditional random fields are applied to incorporate
these constraints [3, 18]. The conditional distribution of a Gaussian random field given
some known values is also Gaussian with a modified mean and covariance function. In
case the value of the random field is fixed in a set of points {x̄i ∈ Ω|i ∈ 1, . . . ,m}, the
conditional covariance function C̃p(x,x′) is expressed as:

C̃p(x,x′) = Cov [p(x, θ),p(x′, θ)|p(x̄i, θ) = 0]

= Cp(x,x′)−CT
pp̄(x)C−1

p̄p̄Cpp̄(x′) (16)

where Cpp̄(x) is the covariance function of p(x) and p(x̄i) and Cp̄p̄ is the covariance
matrix of p(x̄i). The variance of the conditioned random field is shown in figure 3a which
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(a)

(b)

Figure 3: Random field of imperfections for the shallow arch: (a) Normalized variation
Cpi/σ

2
pi
of the conditional random field; (b) Normalized error e2

r/σ
2
pi
of the EOLE

expansion.

illustrates that the imperfections are small in the areas close to the supports and increase
towards the center of the design domain.

A discrete approximation of the Gaussian random field p(x, θ) is established by means
of the Expansion Optimal Linear Estimation method (EOLE) which was elaborated by
Li and Der Kiureghian [21]. In the EOLE method, the random field is initially only
considered in a discrete number of points N in the domain Ω. The random vector cor-
responding to the values of the random field in these points is a multivariate Gaussian
random vector that is decorrelated by means of principal component analysis. At in-
termediate locations, the random field is approximated by means of the Optimal Linear
Estimator (OLE) method. The resulting EOLE expansion is written as a sum of deter-
ministic mode functions ϕk multiplied by standard normal random variables ξk(θ), i.e.,
Equation (11) is approximated as:

x̃(x, θ) ≈ x +

nξ∑

k=1

ϕk(x)ξk(θ) (17)

where nξ ≤ N is the number of modes included in the expansion. The accuracy of
the EOLE discretization is quantified by the variance of the error. In the shallow arch
problem, a truncated EOLE expansion with r = 3 modes for every component pi is
sufficiently accurate since the variance of the error as presented in figure 3b remains
smaller than 2.5 %. This leads to a total of nξ = 6 EOLE modes which are illustrated in
figure 4 by applying them to the nominal design.
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(a) ϕ1 (b) ϕ3 (c) ϕ5

(d) ϕ2 (e) ϕ4 (f) ϕ6

Figure 4: First six EOLE modes of the random field p(x, θ) applied to the nominal arch
design.

4 Robust optimization

4.1 Robust optimization problem

When the geometric imperfections in terms of the EOLE expansion (17) are incorporated
in the finite element analysis, the equilibrium equations (7) are rewritten as:

g(ρ,u, ξ) = R(ρ,u, ξ)−P = 0 (18)

Note that the external load vector P is assumed to be independent of the imperfections.
Equation (18) can be solved in order to express the uncertain displacements u(ρ, ξ) as a
function of the design and imperfection variables. Similarly, the uncertain performance
f(ρ, ξ) also depends on the design variables ρ and the random variables ξ. The un-
certainties are taken into account in the robust optimization problem by defining the
objective function as a weighted sum of the mean mf and the standard deviation σf of
the performance:

min
ρ

fR(ρ) = mf (ρ) + ωσf (ρ)

s.t. V (ρ)− Vmax ≤ 0 (19)
0 ≤ ρ ≤ 1

where the weighting parameter ω is chosen equal to 1 in this study. The mean mf and
standard deviation σf of the objective function are defined as:

mf (ρ) = E [f(ρ, ξ)] (20)

σf (ρ) =
√

Var [f(ρ, ξ)] =
√
E
[
(f(ρ, ξ))2 − (mf (ρ))2] (21)

where E is the expectation operator.

4.2 Stochastic perturbation method

In order to solve the robust optimization problem, the stochastic momentsmf and σf (and
their sensitivities) have to be estimated in each design iteration of the optimization algo-
rithm. Various uncertainty quantification techniques can be applied for this purpose [20].
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In order to avoid multiple calls to the nonlinear finite element solver per design iteration,
a second-order perturbation method [15, 25] is adopted in this work. Note that the ρ-
dependence of the displacements and performance is dropped for notational convenience
in the following, e.g., u(ρ, ξ) is written as u(ξ).

The perturbation method approximates the function f(u(ξ)) by constructing a Taylor
series, usually of first- or second-order, in the direction of the random variables ξ. The
expansion is typically established at the nominal design (ξ = 0):

f(u(ξ)) ≈ f0 +

nξ∑

i=1

f,iξi +
1

2

nξ∑

i=1

nξ∑

j=1

f,ijξiξj (22)

where:
f0 = f(u(0)) f,i =

df

dξi

∣∣∣∣
ξ=0

f,ij =
d2f

dξidξj

∣∣∣∣
ξ=0

(23)

The computational cost of the perturbation method is governed by the effort related to
the computation of the coefficients (f0, f,i, f,ij). An efficient adjoint strategy is presented
for this purpose further below.

Once the coefficients (f0, f,i, f,ij) have been computed, the stochastic moments of the
quadratic function (22) can be expressed in closed form and are used as estimates for the
mean and variance of the actual function f(u(ξ)):

E [f ] ≈ E [f ]2 = f0 +

nξ∑

i=1

f,iE [ξi] +
1

2

nξ∑

i=1

nξ∑

j=1

f,ijE [ξiξj] (24)

Var [f ] ≈ Var [f ]2 = E



(
f0 +

nξ∑

i=1

f,iξi +
1

2

nξ∑

i=1

nξ∑

j=1

f,ijξiξj − E [f ]2

)2

 (25)

Since ξ is a vector of i.i.d. standard normal random variables, these expressions simplify
to:

E [f ]2 = f0 +
1

2

nξ∑

i=1

f,ii (26)

Var [f ]2 =

nξ∑

i=1

f 2
,i +

1

2

nξ∑

i=1

nξ∑

j=1

f,ijf,ji (27)

In the general case of non-Gaussian random variables, additional terms related to higher-
order stochastic moments appear in the expression for the variance [7].

The coefficients of the quadratic approximation (22) are computed using the chain rule
of differentiation:

f0 = f(u0) (28)

f,i =
∂f

∂u
u,i (29)

f,ij = uT
,i

∂2f

∂u∂u
u,j +

∂f

∂u
u,ij (30)
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where:

u0 = u(0) u,i =
∂u

∂ξi

∣∣∣∣
ξ=0

u,ij =
∂2u

∂ξi∂ξj

∣∣∣∣
ξ=0

(31)

The variables (u0,u,i,u,ij) are found by the differentiation of the nonlinear equilibrium
equations (18) in the direction of the random variables:

g0(u0) =R(u0,0)−P = 0 (32)

g,i(u0,u,i) =KT0u,i +
∂R

∂ξi
= 0 i = 1, . . . , nξ (33)

g,ij(u0,u,i,u,j,u,ij) =KT0u,ij +
∂KT

∂ξi
u,j +

∂KT

∂ξj
u,i

+
∂2R

∂ξi∂ξj
+

(
∂KT

∂u
u,i

)
u,j = 0 i, j = 1, . . . , nξ (34)

The derivatives of the internal force vector and tangent stiffness matrix such as ∂R/∂ξi
and ∂KT/∂ξi correspond to shape variations of the finite element mesh. The computation
of these terms is obviously more involved than, e.g., for variable material properties, due
to the rather complicated nonlinear dependence of the finite element matrices on the nodal
coordinates. In this paper, a semi-analytical approach known from shape optimization [1,
27] is used where the derivatives of the finite element matrices are computed by means
of finite differences in order to avoid the tedious derivation of an analytical expression.
Similarly, the directional derivatives ofKT with respect to the displacements are evaluated
most easily using finite differences.

The system of equations (32)–(34) should be solved sequentially. The first equation (32)
corresponds to the state equation of the nominal system, while the equations (33)–(34) are
both linear in the unknowns u,i and u,ij with the same coefficient matrix, i.e. the tangent
stiffness matrix KT0 = ∂R(u0,0)/∂u. The perturbation method, therefore, requires only
a single factorization of the nominal stiffness matrixKT0 in order to solve the linear system
(33)–(34) with nξ + n2

ξ right-hand sides (and actually (3nξ + n2
ξ)/2 if symmetry of u,ij

is considered). Hence the increase of the computational cost is proportional to nξ + n2
ξ

right-hand side vector assemblies and forward and back substitutions of the factorized
stiffness matrix. This method corresponds to a direct differentiation approach [13] since
all imperfection sensitivities of the displacement vector are first computed before being
utilized in the computation of the sensitivities of the objective function.

When the aim is to quantify the uncertainty of a single output function f , the computa-
tional effort of the perturbation method can be further reduced by following an adjoint
approach to differentiation. In particular for a second-order Taylor expansion with the
coefficients (28)–(30) and the corresponding set of state equations (32)–(34), an adjoint
formulation is derived by solving Eq. (34) for u,ij and implementing the resulting expres-
sion into the second-order derivatives f,ij:

f,ij = uT
,i

∂2f

∂u∂u
u,j −

∂f

∂u
K−1

T0

(
∂KT

∂ξi
u,j +

∂KT

∂ξj
u,i +

∂2R

∂ξi∂ξj
+

(
∂KT

∂u
u,i

)
u,j

)

= uT
,i

∂2f

∂u∂u
u,j − vT

(
∂KT

∂ξi
u,j +

∂KT

∂ξj
u,i +

∂2R

∂ξi∂ξj
+

(
∂KT

∂u
u,i

)
u,j

)
(35)
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where the adjoint variable v is defined as the solution of the following linear system:

ga(u0,v) = KT
T0v −

(
∂f

∂u

)T

= 0 (36)

As a result, the second-order derivatives f,ij(u0,u,i,v) are expressed in terms of the vari-
ables (u0,u,i,v) and it is no longer necessary to compute the second-order perturbations
u,ij. Since v represents a single unknown vector, the set of variables (u0,u,i,v) and corre-
sponding set of equations (32)–(33) and (36) grow linearly rather than quadratically with
the number nξ of random variables.

In order to achieve a similar linear growth in the design sensitivity analysis, it is necessary
to consider the sensitivities of the robust objective fR(u0,u,i,v). The design sensitivities
and adjoint equations are derived by introducing the Lagrangian:

f̂R(u0,u,i,v,λ0,λi,γ) = fR(u0,u,i,v)−λT
0 g0(u0)−

nξ∑

i=1

λT
i g,i(u,u,i)−γTga(u0,v) (37)

Setting the partial derivatives with respect to the state variables (u0,u,i,v) equal to zero,
leads to the following set of adjoint systems:

KT0γ =

(
∂fR

∂v

)T

(38)

KT
T0λi =

(
∂fR

∂u,i

)T

i = 1, . . . , nξ (39)

KT
T0λ0 =

(
∂fR

∂u0

)T

−
nξ∑

i=1

(
dKT

dξi

)T

λi −
(
∂KT

∂u
v

)T

γ (40)

where the derivatives of KT are understood as:

dKT

dξi
=
∂KT

∂u
u,i +

∂KT

∂ξi
(41)

The design sensitivities of fR correspond to the partial derivatives of the Lagrangian (37)
with respect to the design variables:

dfR

dρ
=
∂f̂R

∂ρ
=
∂fR

∂ρ
− λT

0

∂g0

∂ρ
−

nξ∑

i=1

λT
i

∂g,i
∂ρ
− γT∂ga

∂ρ
(42)

It should be noted that although no direct dependence of the performance function
f(u(ρ, ξ)) on the design is considered, ∂fR/∂ρ is not zero since f,ij is expanded using
Eq. (35) in the adjoint approach. In summary, the adjoint approach involves 2 + 2nξ
additional right-hand sides in the linear system with coefficient matrix KT0 compared to
a deterministic function evaluation and sensitivity analysis.

4.3 Shallow arch

The design obtained by solving the robust optimization (19) using the perturbation
method is shown in figure 5: this design is clearly more robust and it can be anticipated
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Figure 5: Robust design for the shallow arch.

that the critical load of asymmetric buckling is larger due to the reduced slenderness of
the outer beams. The performance of the designs is assessed by an elaborate Monte Carlo
simulation with 10 000 samples. The results of the different designs are compared in ta-
ble 1. It can be seen that the nominal design is very sensitive to imperfections as indicated
by the large mean mfnl and standard deviation σfnl of the nonlinear end-compliance. The
sensitivity of the nominal design can be mainly attributed to geometric nonlinear effects
related to the unstable bifurcation since the linear statistics mfl and σfl of the nominal
design are much smaller (and in fact quite similar to those of the robust design). Although
the nominal performance fnl of the robust design is slightly worse than for the nominal
design, the robust design is less sensitive to geometric imperfections as the statistics mfnl

and σfnl are much better. Furthermore, the minor differences between linear and non-
linear statistics of the robust design suggest that the imperfections no longer trigger any
significant geometric nonlinear behavior in the design.

In order to further illustrate the effect of robust optimization, figure 6 compares the
nonlinear end-compliance of the nominal and robust design as a function of the third
EOLE mode (the third mode resembles the asymmetric buckling mode and is therefore
expected to have a particularly large influence on the structural performance). It can be
seen that the nominal performance of the robust design (i.e. at ξ3 = 0) is slightly worse, but
the performance of the design is much less affected by geometric imperfections. Finally, it
should be noted that the second-order perturbation method proves to be very accurate in
the present robust optimization as indicated by the small difference between the estimates
m̂f and σ̂f and the statistics mfnl and σfnl in table 1. Furthermore, in figure 6, the
quadratic approximation is almost indistinguishable from the actual performance of the
robust design. For the nominal design, the quadratic approximation in figure 6 is less
accurate which is to be expected as (geometric) nonlinearity is more pronounced in this
design.

Design fnl mfl σfl m̂f σ̂f mfnl σfnl fRnl

Nominal 97.1 108.1 20.1 / / 337.3 1033.3 1370.6
Robust 121.1 119.1 11.5 126.3 12.1 126.6 13.1 139.7

Table 1: Results for the optimized shallow arch designs including the nominal nonlinear
performance fnl, the mean mfl and standard deviation σfl of the linear compli-
ance obtained by a Monte Carlo simulation with 10 000 samples, the estimated
statistics at the end of the robust optimization m̂f and σ̂f and the mean mfnl

and standard deviation σfnl of the nonlinear end-compliance. All results are in
kJ.
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Figure 6: Shallow arch: nonlinear end-compliance of the nominal design ( ) and the
robust design ( ) as a function of the third mode of imperfection ϕ3; quadratic
approximations by the second-order perturbation method for the nominal design
( ) and robust design ( ).

5 Conclusions

Geometric imperfections are an important concern in many design problems and often
have a significant impact on the structural performance, especially when geometric non-
linear effects such as buckling and large displacements are taken into account. This paper
develops a robust approach to topology optimization in order to obtain well performing
designs that are also insensitive to imperfections. The important interaction between
geometric imperfections and geometric nonlinearity is taken into account by means of a
Total Lagrangian formulation for large displacements.

Robust optimization is performed in a probabilistic framework where spatially varying
geometric imperfections are modeled by means of a vector-valued random field in the
design domain. The objective function of the robust optimization problem is formulated
as a weighted sum of the mean and standard deviation of the structural performance
affected by geometric imperfections. These stochastic moments are estimated using a
second-order perturbation method during the optimization. Afterwards, the results of
the robust optimization are validated by means of an extensive Monte Carlo simulation:
it is shown that the perturbation method provides accurate estimates of the uncertain
nonlinear performance in this problem. Furthermore, the simulation also demonstrates
that despite a slightly worse nominal performance, the robust design is much less sensitive
to geometric imperfections.
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Abstract. The most significant contribution to the variability of long-term creep for
in-situ structural concrete members stems from the effect of environmental influences.
Many of these external processes are both seasonal and random. Specifically, ambient
temperature, relative humidity, and wind are key factors with regard to creep response.
But the influencing factors also include the time of casting/construction, the severity
and the extent of seasonality, the exposure characteristics of the concrete member, the
geographic location of the structure together with its prevailing meteorological regime,
and the correlation between temperature and humidity. In order to investigate the im-
pact of these various factors on the net macroscopic creep coefficient used in analysis
and design, a discretized 2D physical model is developed, formulated in terms of com-
bined heat transfer and moisture diffusion. The “local” strain response throughout the
structural element in space/time is then transformed to a section-wide temporal creep
response. The analysis model is then subject to both seasonal and stochastic processes
for the triplet variables: ambient temperature, ambient relative humidity, and ambient
wind conditions. By modifying various main meteorological features, construction time,
dimensional/exposure variables, and stochastic process parameters, we are able to esti-
mate the sectional creep response and, most importantly, the resulting net uncertainty
regarding creep as a function of time.

1 Introduction

The stress and strain in a concrete section is subject to change for a long period of time
due to the effect of creep. For a sustained applied stress on the concrete section, the
strain will gradually increase with time. The magnitude of the concrete deformation
depends upon the applied stress, the age of concrete at loading, the concrete quality, the
shape of the concrete member and the environment in which it is kept. In this paper the
dependence of creep on the environmental parameters is further investigated by including
the effect of the ambient relative humidity and the temperature. The temperature has
an effect on the maturity of concrete and the moisture content plays an important role
in the creep deformation of concrete. The ambient temperature and relative humidity
are strongly correlated and both need to be simultaneously accounted for in the analysis.
A finite element model was developed to determine the creep deformation of a concrete
section due to the varying environmental effects. The model consists of a rectangular
mesh and matching boundary conditions to simulate the behavior of the concrete. The
effects that are included are diffusivity, convection and radiation of heat and diffusion and
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surface transition of moisture. Instantaneous elastic and time-dependent strains caused
by shrinkage and creep arise when a concrete section is subject to an axial load. Due
to the effects of environmental influences the spatial creep is non-uniform. However, the
section remains plane after deformation based on the hypothesis of Navier-Bernoulli, so
that internal self-equilibrating stresses arise in the concrete section [7]. Analysis of heat
and moisture flow in a body is generally a three-dimensional problem. For a concrete slab
or wall it can be simplified by treating the problem as a one- or two-dimensional problem.
The temperature and moisture fields are assumed to be constant over the element length,
but variable over the cross-section.

2 Environmental parameters

Measured environmental data such as temperature variation T , wind direction, wind
velocity, precipitation, and relative humidity RH can be obtained from numerous weather
stations at different locations, for example as made available at Weather Underground [12].
Some basic statistics which are of interest to this contribution are provided in Table 1 by
choosing three different specific locations:

• Brussels, Belgium (oceanic climate)

• Dubai, United Arab Emirates (hot desert climate)

• Calgary, Canada (boreal climate, cold winter, hot summer)

Brussels Calgary Dubai
Temperature Min -10 -32 14
[◦C] Avg ± std 11 ± 6.4 4.8 ± 10.2 29 ± 6.2

Max 30 25 41
Rel. hum. Min 39 19 14
[%] Avg ± std 77.3 ± 10 62 ± 15.5 52 ± 13.4

Max 99 100 87
Wind speed Min 2 0 3
[km/h] Avg ± std 12 ± 6.2 12 ± 5.3 10.1 ± 3.3

Max 40 47 32

Table 1: Information about daily means in the period 2001-2011

The temperature, relative humidity and wind speed as function of time for Brussels are
shown in Figure 1, Figure 2 and Figure 3 respectively.

The ambient temperature has a clear sinusoidal component. To account for seasonal
variations of temperature a sinusoidal variation with superposed noise is proposed by [3]
as:

T (t) =
(Tmax + Tmin)

2
+

(Tmax − Tmin)
2

sin(2πt) (1)

The time-dependent data temperature consists of this sinusoidal variation with an addi-
tional stochastic noise:
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Figure 1: Example: Temperature (Min, Avg, Max) as function of time (Brussels, BE,
period 2001-2011, wunderground)

Figure 2: Example: Relative humidity (Min, Avg, Max) as function of time (Brussels, BE,
period 2001-2011, wunderground)

Figure 3: Example: Wind speed (Avg, Max) as function of time (Brussels, BE, period
2001-2011, wunderground)
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Figure 4: Conditional histogram of RH given T (Brussels, BE, period 2001-2011)

T (t) = T (t) + Tscatter(t) (2)

The noise Tscatter(t) can be modeled using different methods. For example, the Karhunen-
Loéve expansion [6], a renewal pulse process [10], or a simplified least-squares fitting sine,
etc. The ambient temperature and the relative humidity are correlated. A conditional
histogram of the relative humidity given different corresponding temperatures is shown
in Figure 4. It can be observed that increasing ambient temperatures correspond to
decreasing values of relative humidity.

3 2D-Model Concrete response

3.1 Model

Immediately after casting, a concrete element goes through a critical period associated
with the evolution and dispersal of its heat of hydration, its initial drying and the envi-
ronment it is exposed to. As the concrete grows older it is subject to long-term changes
(annual atmospheric variations). The concrete element is hence subject to heat and mois-
ture flows. The environmental boundary conditions will govern the thermal and hygral
distributions in a concrete section and a parabolic diffusion equation is used to simulate
the 2-D flow in a cross-section. Heat and moisture transport take place in a plane perpen-
dicular to the mid-plane of the element. The distribution resulting from the environment
is identical for all cross-sections. The combined effect of continuously changing boundary
conditions and the nonlinear process of moisture diffusion require a numerical analysis.

Possible variables influencing the final concrete response are:

• Environmental variables: RH, T , wind speed

• Geographical location

• Material properties: hydration heat, creep, temperature expansion

• Dimensional variables: depth, width, height, span
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• Time of casting and loading

The formulas for creep and Young’s modulus of concrete are given by NBN EN 1992-
1-1 [1]. The concrete deformation due to a gradually changing load can be calculated
using the Age-Adjusted Effective Modulus Method [8]. The free creep deformations are
non-uniform. Eigenstresses originate from incompatibility of free strains caused by non-
uniform creep within one section. The free strain cannot develop and must be neutralized
by a normal force N , bending momentM and internal self-equilibrating stress-distribution
in the cross-section.

3.2 Thermal diffusion

Transient heat transfer analysis is used to determine the temperature variation within
the concrete section in function of time. The partial differential equations describing the
temperature in this cross section is defined by the Fourier equation taking into account
the heat source provided by the hydration of the cement and is given by:

ρCp
∂T

∂t
= k∇2T + qv (3)

where ρ = material density (kg/m3); k = thermal conductivity (W/mK); Cp = specific
heat of concrete (J/kgK); and qv = the rate of heat production (W/m3). The chemical
hydration reaction of cement generates heat over the curing period. The development of
the heat of hydration qv at the early ages of the concrete is dependent on the chemical
composition of cement paste and temperature. The rate of heat of hydration per unit
volume qv is given by:

qv = ρλQ∞e
−λtE20.08(Ti−20

◦C) (4)

where Q = heat development by hydration (J/kg); Q∞ = limiting heat (J/kg); λ = heat
development constant (s−1); and tE = equivalent reaction time taking account of the time
during which the temperature differs from the standard temperature 20◦C (s). Heat is
transferred from the boundary faces of the cross section by convection and radiation. The
heat transfer between the concrete surface and the environment consists of convection
and Boltzman-type radiation. The surface heat flow is the sum of surface convection flow
and emission of radiant heat. Convection and radiation heat transfer are assumed to take
place between the faces of the concrete and a specified ambient temperature. This will
allow a sensitivity study of wind, convection and radiation. Because radiation is included,
the problem is nonlinear. The amount of heat transferred from each face per unit area
due to convection is defined as:

Qconv = hc(T − Ta) (5)

where Ta = ambient temperature (K); T = temperature at a particular x and y location
on the concrete surface (K); and hc = specified convection coefficient (W/m2K).
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Figure 5: Convection coefficient as function of wind speed

The magnitude of the thermal surface convection factor hc depends on the wind speed.
An estimate for the specific convection coefficient hconv based on the wind speed is given
as illustrated in Figure 5 by Bentz [9].

The amount of heat transferred from each face per unit area due to radiation is:

Qr = εCS(T
4 − T 4

a ) (6)

where ε = emissivity coefficient applied to the radiant heat transfer between the face of the
concrete and the surrounding air (-); and Cs = Stefan-Boltzmann constant (W/m2K4).
The values are shown in Table 2. The surface heat flow is equal to the sum of the surface
convection flow and the emission of radiant heat. The effects that were excluded from the
thermal analysis are solar radiation on the concrete surface (sun and cloud cover: solar
radiation intensity and absorptivity on a concrete surface).

3.3 Moisture diffusion

The analysis is performed by solving partial differential equations. The moisture diffusion
depends strongly on the moisture content and temperature and is thus non-linear. The
moisture diffusion coefficient drops from 100% for wet concrete to 10% for 50% moisture
content in the concrete [5]. The 2D-nonlinear moisture diffusion equation is expressed by
Su-Tae et al. [11] as:

∂h

∂t
= ∇ · (Ds(h, T )∇h) (7)

where h = pore relative humidity (-); and Ds = moisture diffusion coefficient (m2/s).

The moisture diffusion coefficient Ds is dependent on the relative humidity and tempera-
ture. For isothermal conditions, the moisture diffusion coefficient is influenced by the pore
relative humidity taken into account according to Model Code 90 [2] and permeability on
the temperature according to BAZANT and NAJJAR [4]. The equation is expressed as:

Ds(h, T ) =
3.6 · 10−6
fck\10

(α +
1− α

1 + ( 1−h
1−hc )

n )exp[
Qh

R
(

1

273 + 20
− 1

273 + T
)] (8)
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Parameter Symbol Value Unit
material density (in Eq 3) ρ 2200 kg/m3

thermal conductivity (in Eq 3) k 2 W/mK
specific heat (in Eq 5) Cp 960 J/kgK
limiting heat (in Eq 5) Q∞ 320 kJ/kg
heat development λ 8.0× 10−6 1/s
convection coefficient hconv 10 W/m2K
emissivity of the face ε 0.9 -
coefficient α (in Eq 9) α 0.05 -
coefficient hc (in Eq 9) hc 0.75 -
coefficient Qh/R (in Eq 9) Qh/R 2500 K
coefficient n (in Eq 9) n 15 -
coefficient β (in Eq 9) β 30× 10−9 m/s

Table 2: Assumptions for the constants used in the described formulas

For the boundary condition of moisture, it is necessary to correlate the surface moisture
with the ambient humidity. The transfer of moisture between the exposed concrete surface
and surrounding air of relative humidity is described by Su-Tae et al. [11] as:

Ds(h, T )
∂h

∂z
= β(ha − hs) (9)

where β = hygral surface transition coefficient (quantifies several moisture transition
mechanisms) (m/s); ha = environmental humidity (-); and hs = relative humidity on the
exposed surface (-). The values considered for these parameters are also given in Table 2.

Sink and source effects of hydration drying and carbonation wetting are considered to
make a negligible contribution and are omitted. At the end of the wetting period (wet
curing) h = 1 at t0 is assumed.

Both space and time are discretized. The Forward Difference scheme is used for the time
derivative. The equation has a second-order derivative in space. As an improvement the
Crank–Nicolson method is used for solving the diffusion equation numerically. It is a
second-order method in space and it is implicit in time.

4 Analysis

4.1 Analysis steps

The analysis is performed in a quasi-deterministic manner using recorded daily weather
data as the boundary condition for the coupled moisture and heat transfer analysis. This
provides the creep strain as a function of time for any given geometry and ambient condi-
tions. The uncertainty of the creep process in the concrete element with exposed surfaces
is captured by using different casting periods.

Finally a table is generated defining modified parameters for temperature and relative
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Figure 6: Local creep, different casting periods (example for Belgium)

Figure 7: Effect of different constant parameters on local creep strain

humidity for a given location and casting date. This method allows the designer to
include the ambient conditions in a simplified but more accurate manner using commonly
used creep equations such as those provided in Eurocode and Model Code.

4.2 Results

Based upon the obtained data of relative humidity and temperature as function of time,
creep strains can be estimated. For example, the local creep of a cross section with a
moisture content which is constant in space but variable in time and temperature equal
to the surrounding environmental conditions is shown in Figure 6. The figure represents
many different casting times. The different casting times have a significant effect on the
final creep and result in variations in long term creep strains up to 30%.

The extreme values for temperature or relative humidity are compared in Figure 7:

The expected creep increases with decreasing ambient temperature and relative humidity.
The local creep strain depends on the location (for an equal casting day at March 2001
and loaded at 28days). This is shown in Figure 8 where the effect of diffusion is included.
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Figure 8: Influence of geographical location (for same casting days) on local creep strain.

Figure 9: Influence of different time of casting (Calgary, CA)

Figure 10: Influence of different loading times (Calgary, CA)

For a given geographic location, the creep also depends on the time of casting, as shown
in Figure 9, and on the different loading times, as shown in Figure 10.

Table 3 can be used to determine constant replacement values for temperature and relative
humidity that result in creep strain histories equivalent to those resulting from the full
time history data. Least squares methods are to detect the “best fit” values given in Table
3.
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Belgium Calgary Dubai Belgium Dubai
2 Jan 10◦C, 76% 6◦C, 50% 27◦C, 54% 6 Jul 14◦C, 78% 26◦C, 62%
17 Jan 10◦C, 74% 5◦C, 50% 27◦C, 52% 21 Jul 15◦C, 78% 31◦C, 52%
1 Feb 9◦C, 74% 6◦C, 46% 28◦C, 48% 5 Aug 14◦C, 80% 29◦C, 58%
16 Feb 11◦C, 70% 6◦C, 46% 29◦C, 44% 20 Aug 13◦C, 82% 32◦C, 52%
8 Mar 11◦C, 70% 4◦C, 52% 27◦C, 48% 4 Sep 14◦C, 82% 28◦C, 62%
23 Mar 10◦C, 72% 3◦C, 56% 28◦C, 46% 19 Sep 14◦C, 82% 28◦C, 62%
7 Apr 11◦C, 72% 4◦C, 56% 29◦C, 44% 4 Okt 12◦C, 84% 27◦C, 64%
22 Apr 12◦C, 72% 6◦C, 54% 28◦C, 48% 19 Okt 13◦C, 82% 29◦C, 58%
7 May 12◦C, 74% 5◦C, 60% 27◦C, 52% 3 Nov 12◦C, 82% 31◦C, 52%
22 May 12◦C, 76% 4◦C, 66% 26◦C, 56% 18 Nov 12◦C, 80% 27◦C, 60%
6 Jun 13◦C, 76% 5◦C, 66% 26◦C, 58% 3 Dec 10◦C, 80% 27◦C, 58%
21 Jun 13◦C, 78% 6◦C, 66% 26◦C, 60% 18 Dec 10◦C, 78% 27◦C, 56%

Table 3: Constant replacement values for temperature and relative humidity correspond-
ing to different casting periods.

5 Conclusions

The 2D model is used to make a prediction of the creep deformation as function of time
using a history of ambient temperature and relative humidity as function of time. The
intention of the analysis is to use the results of computer simulations to provide evidence
of the relative importance of various parameters. Many of the simulations gave similar
results and showed little influence on the creep strain. The following conclusions are
made:

• Different combinations of boundary conditions (exposed or insulated) give similar
results for an equal environment time history.

• The effect of wind on temperature gradients can be neglected because the concrete is
fully adjusted to the ambient temperature within several hours for normal specimen
sizes.

• The creep response depends significantly on the time of casting and the geographic
location where differences of 30% in long term creep are possible.

• The major part of creep deformation occurs during the first months after applying
the load.

• The thermal response DT (approximately 10−6 m/s2) is approximately 104 times
faster compared to the moisture diffusion DS (approximately 10−10 m/s2) in con-
crete. Thick sections are observed to dry out quickly in the first few months at the
surface but the inner core seems to remain moist for a long time. The nonlinearity of
moisture diffusion is responsible for this effect. The dry outer layers cause a drastic
decrease in diffusivity so that the moist core of the structure is surrounded by a skin
becoming gradually more impermeable.
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Abstract. The reliability assessment of existing structures is usually carried out applying
partial factor method. As in most cases the complexity of the problem is beyond tradi-
tional assessment procedures, probabilistic methods are often invoked in order to estimate
the actual probability of failure. Nonetheless a factor that should be considered is the
potential bias arising with the refinement of probabilistic models: in effect, the outcome
of reliability assessment will be dependable only if the potential bias is negligible. In this
paper a procedure that increases the robustness of probabilistic methods and Bayesian
updating techniques for the reliability assessment of existing structures is presented. The
procedure will be especially devoted to historical buildings.

1 Introduction

Due to environmental, economic and socio-political reasons, significance and field of ap-
plication of existing structures assessments’ extend rapidly, also in view of preservation
of cultural heritage. Despite assessment of existing buildings and design of new buildings
differ in many aspects, in them basic variables are handled similarly through partial fac-
tors. On the other hand, considering that an increase of the safety level is usually more
costly for an existing structure than for a new one, which is still in the design phase, and
that the partial factor method is generally a safe-sided approach, in the assessment of
existing structures particular attention should be devoted to avoid unnecessary expensive
interventions, that, in case of heritage buildings, also entail a loss of the related and pre-
dominant cultural value.
Probabilistic methods are often invoked in order to perform more ‘realistic’ reliability
assessment. Those methods have been widely implemented in the mechanical and aero-
nautical branch of engineering, where the components, which are mass-produced, are
manufactured under the same conditions and can be tested repeatedly till to failure. On
the contrary, reliability of civil structures is deeply influenced by the site specific con-
ditions in which they are built: in effect, they are single and usually unique products,
that cannot be tested to destruction and whose collapse is infrequent and often associated
to human errors. Moreover, these aspects are further emphasized in historical buildings,
designed according to experience and tradition.
In the following the procedure for performing a probabilistic reliability assessment is re-
viewed and its limits are highlighted, especially when it is applied to heritage structures.
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The main contribution of this paper is the development of a flow chart for planning test
and inspection on historical buildings aiming to increase the robustness of probabilis-
tic methods and Bayesian updating techniques for the reliability assessment of existing
structures.

2 Procedure for performing a probabilistic reliability
assessment

• Establishment of the limit states to be considered;

A limit state is a distinct condition separating satisfactory and unsatisfactory states of a
structure. Two fundamentally types of limit states are recognized: ultimate limit states
and serviceability limit states. Ultimate limit states are associated with collapse and
other form of structural failure, while serviceability limit states correspond to conditions
of normal use (deflections, vibration, cracks).

• Identification of failure modes that could lead to the limit states;

A component, or a system, may fail a limit state in any of a number of failure modes.
Modes of failure include mechanism such as: yielding, bursting, ovality, bending, buckling,
creep, ratcheting, de-lamination, denting, fatigue, fracture, corrosion, erosion, environ-
mental cracking, excessive displacement, excessive vibration.

• Construction of limit state functions;

The limit state criterion must be expressed in terms of a performance function that
is a function of basic variables equals to zero at the corresponding limit state. The
basic variables that should be considered are: dimensions of the structural elements, load
characteristics, material properties, model uncertainties.
The fundamental case of the theory of structural reliability is the analysis of the simple
requirements that the action effect E is smaller than resistance R.

E < R

This condition leads to the fundamental forms of the limit state functions that are [7]:

G = R− E = 0 or Z = R/E = 1,

being G the so-called safety margin and Z the so called safety factor. Both E and R are
generally random variables and it is necessary to accept the fact that the limit state may
be exceeded with a certain probability. The essential object of the reliability theory is to
assess the probability of failure pf :

pf = P [G < 0] = P [R− E < 0] or, equivalently, pf = P [Z < 1] = P [R/E < 1]

A simplified estimate of the failure probability pf in construction engineering can be
obtained through the reliability index β.
When E and R are normally distributed β is exactly given by

β =
µR − µE√

σ2
R − 2ρREσRσE + σ2

E

=
µG

σG
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Figure 1: Definition of probability of failure pf and reliability index β.

where µR, µE and µG are the mean values of R, E and G, respectively, σR, σE and
σG are the standard deviations of R, E and G, respectively, and ρRE is the correlation
coefficient of R and E, which is nil for uncorrelated variables. When, instead, E and R
are log-normally distributed β is exactly given by

β =
ln(mrR)− ln(mE)√

ln(1 + V 2
R)− 2ρRE

√
ln(1 + V 2

R) ln(1 + V 2
E) + ln(1 + V 2

E)

where mR, mE and mG are the medians of R, E and G, respectively, VR, VE and VG are
the variation coefficients of R, E and G, respectively, and ρRE is the correlation coefficient
of R and E. Limit states can be defined for components part of the structure or for the
complete structural system.

• Definition of internal forces

A basic requirement of a probabilistic reliability assessment is the definition of internal
forces. Internal forces mainly depend on 2 variables: the action and the transfer function
that converts action in internal forces. The definition of transfer functions requires the
identification of the structural scheme and actual properties of structural elements.

• Data analysis and the construction of appropriate probability distribution
functions: Bayesian updating techniques;

Determining the appropriate pdf and its parameters for basic variables is one of the most
difficult and crucial task in the reliability assessment of existing structures.
One significant difference to be considered assessing existing buildings and assessing new
ones is that while existing buildings belong to the physical world, in the design stage new
ones belong to the ideal world. Clearly, at the end of the erection phase, the actual relia-
bility of a new structure can be greater or lesser than the theoretical reliability estimated
in the design phase: this is the natural outcome of all the uncertainties accompanying
the erection phase itself. But an existing structure is much more than a structure just
built, since it is also the result of the time passage, in one word of its history, in which
aging, deterioration, environmental influences and human interventions modify the actual
reliability level during the time.
When assessing an existing building is a general principle that actual characteristic of
basic variables should be considered. It follows that detailed assessment should be based
on material testing, determination of action and structural properties [7].
One relevant challenge in assessing existing structures is what to do with information
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Figure 2: Prior pf and updated pf as modified by new information fv(.).

obtained and how to employ it in a probabilistic framework. If additional information has
been gathered, the knowledge implicit in that information might be applied to improve,
or update, previous estimate of structural reliability. The framework for doing this is
Bayesian statistic, which uses Bayes Theorem [15]. The concept can be illustrated quite
simply for the updating of pdf of G.
If f ′

G(.) represents the a priori (conditional) pdf of G, and fv(.) represent the (conditional)
PDF based on new data, the posteriori or updated pdf f ′′

G(.) is as shown.

The type of information available can be, for instance: survival after a significant over-
loading, material characteristics from different sources, capacity by proof loading, static
and dynamic response to controlled loading, known geometry, damage and deterioration,
known actions, known human intervention. It is possible to update the pdf of basic vari-
ables or the pdf of events. In both cases the refining process will then lead to an updated
PDF of pf .

• Evaluation of failure probabilities: notional, realistic and actuarial probability of
failure;

A probability of failure calculated for the purpose of code development and calibration
is based on conventional model and we usually refer to it as notional. When notional
probabilities are evaluated quantities are omitted either intentionally (e.g. human error) or
unintentionally because of a lack of data or a full understanding of the structural scheme.
Instead, if probabilities are estimated on the basis of a set of modeling assumptions
consistent with realistic aspects of the real structural behavior, the calculated probability
will represent the true degree of belief and it will be a true Bayesian probability. Some
authors referred to it as ‘realistic’ probability of failure [18]. However, in many cases,
it is not necessary to remove all the layers of conservatism and realistically model all
aspects of behavior. It should be noted that neither notional nor realistic probability
of failure are sufficient for the purpose of risk based optimization, that it should be
based on ‘actuarial’ or ‘true’ probability of failure. A true probability must be estimated
using realistic probabilistic models and they must be validated with regard to observed
probabilities of failure.

• Assessment of the result.

The goal for reliability analysis is to document that the target reliability is achieved.
Target reliabilities are based on calibration and optimization and reflect the ‘accepted’
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level of risk in terms of possible failure consequences in a given reference time period.
The accepted level of risk is a complicated societal issue because it depends both on the
risks associated with other human activities and on the actual probability of failure of
built heritage and it is normally the result of political choices in the framework of more
general safety policy.

3 Limits of probabilistic methods for the reliability
assessment of existing structures

3.1 General consideration

Different kinds of uncertainties are associated at each step of the procedure that may be
classified regarding their source. Some examples are: inherent, measurements, statistical
and model uncertainty. With the last one we especially refer to the epistemic uncertainty
associated with the choice of the models that are implemented in a reliability assessment.
Model uncertainty is due to imperfections and idealization made in physical model for-
mulation for load and resistance as well as in the choice of the probability distribution
representing the uncertainty in basic variables. For a population of structure, it is possible
to assess the bias arising from model uncertainty, and treat it as a random variable in the
reliability assessment. However, for any particular structure, model uncertainty manifests
as a model bias. The bias especially arises from the epistemic uncertainties associated with
the refinement of the ’realistic’ model. Among the others, examples of possible model bias
are: ambiguity in the definition of limit states, misunderstanding failure modes; misunder-
standing the structural scheme; disregarding system effects; wrong estimation of variables
dependency; arbitrariness in the choice of the probability distribution; acquisition of data
that is not relevant for the structure. The reliability assessment of a particular structure
will be dependable only if the potential bias due to epistemic uncertainties is negligible
[18]. Therefore the fundamental limitation of probabilistic methods stems from modeling
issues, and strategies aimed to reduce the related uncertainties have to be proposed in
order to limit potential errors, and widen the range of applicability of those methods in
the reliability assessment of existing structures.

3.2 Challenges in applying probabilistic methods to historical
building

The bias can be particularly great in case of historical structures. With historical buildings
we refer to important monuments but also to vernacular heritage, mainly made of masonry
and wood. Applying probabilistic methods to those structures is particularly difficult
because:

1. They are designed according to empirical bases instead of formal design approach
and recognized theories or normative prescription;

2. The probabilistic description of the material properties is affected by great uncer-
tainties, for example due to the heterogeneity and to the composite nature of ma-
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sonry or the wood anisotropy; the acquisition of data is also a complicated process
[19];

3. Transfer functions are affected by great uncertainties; it is possible to recognize 3
sources of randomness:

• The actual behavior is represented by means of an ideal model, for example
using de Saint-Venant theory, disregarding local effects or stress concentrations,
considering theoretical restraints and theoretical dimensions and disregarding
dimensional tolerances and unavoidable error in executions. This is an intrinsic
source of randomness also presents in new structures, but it has a special impact
in this framework because classical theory cannot be easily applied;

• Structures are complex, with no distinction between decorative and structural
elements, characterized by dependency among the elements and a high degree
of indeterminacy;

• Alteration may have occurred to the structure.

However several authors applied probabilistic methods for the assessment of existing his-
torical structures [1], [8], [17], [19], [21]. Nonetheless a probabilistic approach depending
on a lot of random variable is difficult to govern and often becomes unreliable. Therefore
a clear understanding of the structural scheme is the first step toward the reduction of at
least the last source of uncertainty, as well as the uncertainty related to internal forces.

3.3 Main source of model uncertainty: structural alteration

Uncertainty in the structural scheme is especially great if the structure has been altered
over the course of the years. With structural alteration we referred to:

• Modifications to the structural scheme;

• Deterioration processes.

A good example of a structure that has been subjected to different kind of alterations
is briefly described below; for further details it is referred to [2]. It is an old wooden
roof structure that belongs to a building in Munich erected in 1615. The preliminary
assessment reveals that connections are decaying or broken and the floors are affected by
big deformations. Analyzing damages and deformations it was possible to reconstruct
the history of the roof since its erection.
At the beginning damages occurred due to a leak in the roof. Some joints were destroyed
and failed, and the entire roof settled into an inclined position. In order to stop the
movements, a vertical truss was added: the element took the vertical loads, but it was
not able to take the horizontal thrust. Therefore a new mechanism originated, leading to
additional damage. In order to prevent further deformation, struts were built with the
aim of supporting the middle of the span. Due to the struts, forces in the suspension
structure changed from tension to compression. The joints which were not designed to
take compression forces fell apart.
Modification and degradation are seldom documented and not easy detectable. Further-
more, as it is clear from the example, they usually have a great impact on the structural
integrity, leading to weak points and structural defects. Disregarding those anomalies
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Figure 3: Possible failure modes in case of: 1) No connection; 2) Total connection; 3) Partial
connection. In 4) the parameters considered in the sensitivity analysis are represented.

entails a misunderstanding of the structural scheme that leads to an unacceptable error in
the reliability assessment. Therefore, a preliminary careful examination of the structure
is necessary to understand the actual structural behavior and to diagnose correctly
possible cause of failure.

3.4 Example: the impact of model uncertainty due to a structural
alteration on the reliability assessment

An example of a frequent structural alteration is presented below; for further details it
referred to [9]. It is the case of a masonry chapel from the 18th century whose walls
have been reinforced later with counterforts. The method of bonding with counterforts
may significantly vary, therefore the behavior of a compound buttress under the force
transmitted from the vault is uncertain as well. A sensitivity analysis has been carried
out, considering three different bonding conditions between the buttress and the wall, at
which correspond three different failure modes:

1. No connection: this is a limit case, where the counterfort is considered as simply
added to the wall: the buttress and the wall rotate independently around the re-
spective external base vertex, so that the common boundaries slide without friction;

2. Total connection: this is another limit case, where the whole system rotates around
the external base vertex of the counterfort;

3. Partial connection: this situation is simulated considering that a portion of the wall
rotates together with the counterfort around external base vertex of the counterfort
itself.

The assumption that part of the wall is well bonded to the buttress, so that it may
collaborate to the stability, appears rational. The key question is the length x of well-
bonded wall that should be assumed. Therefore a parametric study showing the impact
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of the parameter x on the reliability assessment has been arranged and developed using
COMREL. The following parametric limit state has been considered:

G(x) =

[
γa
B2

2
+ γxA(B +

x

2
) + γA

(b− x)2

2
− F

]
H

The deterministic parameters are a, representing the width of the buttress, A, representing
the width of the wall, b, representing the thickness of the wall, while stochastic variables
are B, representing the height of the buttress, γ, the specific weight of the material, and
F, which the horizontal force applied at the top element. Assumptions regarding their
probability distribution have been made according to [12]. The model for the load F
consider both the uncertainties in the thrust transmitted by the vault and uncertainties
in the location of the thrust itself, so that the reliability level can be assumed independent
on the height H, which can be assumed as deterministic.

Variable Distribution µx Vx
F (kg) Normal 10000 0,18
B (m) Normal 2,5 0,1
γ (kg/m3) Normal 2500 0,08

Table 1: Stochastic variables.

Constant
a (m) 1,2
A (m) 2,4
b (m) 0,9
H (m) 5,3

Table 2: Deterministic values.

Results reveal that the considered parameter x has a dramatic impact on the reliabil-
ity assessment: as x increase from zero to the wall thickness b, the reliability index β
ranges from around 0,7, corresponding to a probability of failure pf ≈ 0, 242, to 4, 2,
corresponding to a probability of failure pf ≈ 1, 33 · 10(−5). These results confirm that, to
obtain dependable estimate of the structural reliability, it is necessary both to recognize
the actual behavior of the structure, also taking into account structural alterations, and
to evaluate accurately model uncertainty.

4 Flow chart for planning test and inspection on the
structure

The flow chart represents an extension of the ISO 13822 general flow for the assessment
of existing structures when a detailed evaluation is required [11]. A detailed reliability
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Figure 4: Variation of the reliability index β with the parameter x.

assessment can be carried out regarding several circumstances [7]. The reliability assess-
ment of the whole structure is considered as a general scope; anyhow, in some cases local
assessment may suffice depending on particular situation. The extension, which is espe-
cially devoted to assess historical heritage but can be applied to all existing structures,
has been developed according to the following principles:
The extension can be applied to all existing buildings, but it is especially devoted to his-
torical structures. The extension has been developed according to the following principles:

1. The main source of error in the reliability assessment of existing structures is rep-
resented by disregarding defects due to structural alterations. If defects are not
recognized, the reliability assessment is not dependable.

2. Destructive tests (DTs) endanger both the cultural value and the structural integrity
of the building; therefore they should not be performed. Minor destructive tests
(MDTs) can be performed assuming that critical elements for the structural stability
have been recognized.

The flow chart represents a process for planning extensive inspections and tests on the
structure. According to ISO 13822 flow chart, also this extension is conceived as iterative
process. The process starts with non-destructive tests (NDTs), going ahead with MDTs;
at the same time, an increasing understanding of the structure, of crucial elements and
defects will be achieved.
Along the flow chart structural models and analysis will be exploited not only to assess
the structural reliability but also to plan investigation. The process of modelling and
analysis, always not trivial, is particularly complex in case of historical buildings. It is
important to underline that:

1. The choice of models and analysis is influenced by several constraints, e.g. cost,
need of experience, level of accuracy required, availability of input data, need of
validation, information sought etc.

2. Simpler model and analysis should be implemented to assess the system behaviour.
Then local assessment will be carried out with more advanced numerical tools. Often
comprehensive answers can only be obtained only through a combined approach. For
more details it is referred to [13] and [6].
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Figure 5: Flow chart for planning investigation on existing structures.
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It is possible to articulate the procedure for collecting information in 5 steps, regarding
the purpose of each investigation campaign. In the following each stage is analysed,
and some specification are given. Some possible examples of specific objects, and the
related investigation techniques, regarding masonry historical buildings are then listed in
a summary table.

• Step 1: Determination of the historical evolution of the building

As a starting point the original state of the building has to be defined. In case of ex-
isting building designed using formal design approach, it is possible to arrive at the so
called simulated original design, or redesigning the structure considering original draw-
ings, methodologies and Code [6]. If the building has been designed on empirical bases, it
is more difficult to define the original design. However a deep knowledge of construction
techniques commonly used in that period may help in identifying the original structural
condition and appearance. It should be emphasized that old buildings are hardly struc-
turally sound and they usually exhibit an enormous degree of improvisation. Therefore
retracing the original design of the structure helps to address first inspection and deter-
mine earlier defects.
Researches should then focus on documented and observed structural alteration. Deteri-
oration mechanism, as well as maintenance and restoration, seldom reported, should be
identified. It is important also to notice cosmetic maintenance that could hide degrada-
tion characteristics and bring to an erroneous perception of the structural reliability. The
historical evolution of the building has to be reconstructed and the relevant stages should
be defined. Theoretical studies, like the development of numerical models describing the
behaviour of the structure at each stage, should be carried out, if necessary. The goal is
to determine causes and effects of damage and degradation process, as well as motivation
of structural modifications and their impact on the structure.

• Step 2: Determination of the current structure

This step is articulated in 2 phases. The first phase is the determination of current ma-
terial properties and actions. Investigation should especially be made in order to define
the type of soil and the quality of the material. A powerful methodology to determine
masonry properties based on visual inspection is proposed in [5]. Deterioration models
which describe the future performance of the structure should be determined based on
investigation and experience with similar structures.
The second phase is the determination of structural properties performing static or dy-
namic load tests. Results of dynamic tests may be used not only to identify the model of
the structure and thus to improve the evaluation of the response of the structure to loads
and external actions, but also the occurrence and the evolution of damage in structural
members or in the whole structure. For further details it is referred to [6].

• Step 3: Identification of defects

Defects will be identified according to a cross-check procedure, based on the location of
critical elements and the location of possible defects.
The definition of the historical evolution of the building could point out where alterations
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may have occurred, and therefore where more accurate observations have to be concen-
trated. At the same time the system analysis reveals which members are crucial for the
structural integrity. A critical element is an element whose failure would start a chain
reaction of successive failures that would take down a structure. Critical element depends
on the following system properties: redundancy, damage tolerance, robustness. According
to [16], it is possible to measure the contribution of each member to the overall struc-
tural integrity; for crucial elements it is important to guarantee higher reliability level
and reduced model uncertainties. Therefore critical member will be deeply investigated,
especially if alteration may have affected them. Difficult problems can be solved by the
complementary use of MDTs and NDTs, but particular care should be paid in planning
the MDTs to avoid damages and reliability reduction of these crucial elements; in many
cases NDTs have to be used in alternative. Precautionary measures have to be arranged if
the investigation may endanger the safety of the element. Some typical defects are listed
in the summary table together with the best combination of tests able to detect them [4].

• Step 4: Reduction of uncertainties in the probability distribution of basic variables

The first reliability analysis is performed for the most critical elements using default
probabilistic models of action effects and resistance. If the structural safety of those
areas is not verified, further evaluation is possible based on improved load and resistance
models. Those models will be improved through the collection of site data. Results reveal
which parameters can be most effectively updated, and therefore where more refined
investigation should focus on [22].

• Step 5: Compensatory surveillance

When reliability is not verified it is possible to arrange compensatory surveillance mea-
sures that ensure the continued use of a structure for a given bearing capacity. Those
measures can be recurring – e.g. time interval recurring inspections, recurring load test
– or continuous – e.g. threshold value monitoring, weight control. Then compensatory
surveillance will result in a safety gain that can be quantified implementing several meth-
ods [20].

4.1 Application of Bayesian updating techniques to investigation
results

Along the flow chart Bayesian updating techniques are often invoked in order to implement
investigation results in a probabilistic framework. In the flow chart 4 different updating
stages are recognized:

• Updating of system characteristics

Dynamic test results must verify model output. If the model output compares favourably
to physical evidence, the model acquires credibility. However, if significant deviations are
found, model calibration procedures may then be implemented. In [3] both the structural
model and the probability model describing the accuracy of the structural model’s pre-
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Object of the investigation Investigation techniques

Detailed
documentary
search and review

Original drawing, design documentation, design
methodology; Codes valid in the period where the structure
was designed, documented alterations, actions
(earthquakes, flooding, fire etc.).

Archive study, study of database gathering
information about comparable structure.

Detailed inspection
Geometry of the structure; damage (out of plumb,
deformations, crack pattern etc.); observed degradation,
modification, maintenance and repair intervention.

Visual inspection, geometrical surveys,
photogrammetry, monitoring techniques
(mechanical instruments - e.g. crack meter,
removable deformometer; electronic
monitoring – e.g. trasducers, data
acquisition system).

Determination of
material properties
and actions

Shape of masonry units; connection among masonry leaf;
uniformity of masonry bond; quality of mortar;
arrangement of vertical joints; arrangements of horizontal
row.

Study of literature, study of database
gathering information about comparable
structure, visual inspection, geometrical
surveys.

Determination of
static and dynamic
properties of the
structure and
transfer functions

Stiffness of floors and balcony. Load tests.

Stiffness, natural period, modes of vibrations, damping,
amplitude of vibrations.

Dynamic tests. (Disturbance: wind, traffic,
earthquakes, forced action induced by
impact or vibrators. Monitoring techniques:
seismoters, accelerometers, remote radar
interferometric measurements of
displacements and vibrations).

dentification of
defects

Surveys of structural damages connected to typical cracks. Flat jack, sonic and radar test.

Presence of multiple leaf walls or detachment of layers. Endoscopic surveys, dismantlement of small
part of the section.

Presence of inclusions and voids.
Thermographic survey if they are at small
distance from the surface, otherwise sonic
and radar test, georadar.

Moisture. Radar test, termographic survey, power
drilling method.

Further
investigation

State of stress; modulus of elasticity; coefficient of lateral
deformations; masonry elements and mortar chemical,
physical and mechanical properties; morphology of the wall
cross section.

Flat jack, double flat jack, dismantlement of
small part of the wall, endoscopic surveys,
samplings of masonry elements and
mortars, laboratory test.

Compensatory
surveillance

Action, deformations, cracks depth and length,
displacements, eccentricities.

Monitoring techniques (e.g. fibre optic
sensor technology).

Table 3: Objects of the investigation and investigation techniques for a masonry structure.

dicted response are updated using test data. This is done by applying Bayes’ theorem to
update probability models and quantify modelling uncertainties.

• Updating of action models

If the building to be assessed is affected by some damage, it is often desirable to identify the
magnitude of those forces in order to learn for future events. The damaged structure may
be used as a ‘measurement device’. This should involve a modelling of the uncertainty of
the state of the structure, as to express the variation deemed possible for the environmental
forces. Concerning the environmental forces, there is a common agreement that a Bayesian
setting is adequate. This means assigning so-called a priori probabilities to actions, based
on the usually extensive knowledge on how they are generated – e.g. storms, floods,
earthquakes. Then a posteriori information will be obtained through Bayesian updating,
as new information is included. In this step testing and updating is performed numerically;
then numerical results maybe compared to the estimated state of damaged structure [14].

• Updating of the structural model and model uncertainties

This stage is very akin to the system identification, this time not of the global structure
but of a part of it. The updating process of both the structural model and the related
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uncertainty is carried out considering investigation results aimed at detect hidden defects.
The model uncertainty can be quantified by performing a sensitivity analysis regarding
the uncertain model parameters or by (qualitative) professional judgment.

• Updating of random variables

If after the first assessment uncertainty is still too large, especially when deciding if it is
safe or not, further testing may be required. Parameters of the distributions are initially
modelled by prior distribution functions. Observations of realisations of random variables
are used to update prior distribution functions by the application of the Bayes theorem,
and transformed into posterior distribution functions. It is also possible to perform a
posterior analysis for a given test plan before results have been obtained, assuming that
results will follow the prior probabilistic model. This type of analysis is called pre-posterior
and it is implemented in order to plan the number of tests and at the same time minimize
the overall cost [7].

5 Conclusion

A probabilistic approach that depends on several random variables is difficult to handle
and often it becomes unreliable. This is the reason why probabilistic methods should be
carefully applied to existing buildings and especially heritage structures, affected by nu-
merous uncertainties. The main source of model uncertainties is represented by structural
alteration, referring with this term to structural modification, also due to human inter-
vention, and degradation phenomena. Investigations and tests should be aimed to detect
hidden defects especially in those elements that are crucial for the structural integrity,
and reduce uncertainty in the models. A flow chart for planning test and inspection on
the structure has been proposed; along the flow chart, Bayesian updating techniques have
been exploited with the aim of including investigation results in a probabilistic framework
and obtaining more ’realistic’ probability of failure. The definition of the historical evo-
lution is a multidisciplinary task [10] that assumes a paramount role in detecting hidden
defects; it is also important for developing appropriate repair concepts.
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Abstract. Experimental data is a a rich source of information for studies on structural
behavior. Also, a characteristic property to be studied in structural force-deformation
relationship is the yield point. So, in this study, we used the experimental data collected
in a database on reinforced concrete walls to investigate different methods available in
the literature for the calculation of the yield displacement. The database was originally
created for model quality evaluation purposes to which the present study belongs.

1 Introduction

Strength and deformation components are well known as convenient response parameters
to be used in performance-based analysis/design. A characteristic point in the strength-
deformation relationship of a structure under seismic loading is where the global yield
happens. i.e. where a major loss in the stiffness occurs. Yield point has become a crucial
part of many simplified seismic design procedures. This specifically includes methods
involving simplification of multi-degree of freedom systems to single-degree of freedom
systems. The simplification process normally takes advantage of some linearization
method ([1] for instance) which indeed requires a simplified definition of the yield point.
Since this point characterizes the idealized force-deformation relationship (or the capacity
curve), careful attention should be paid to its definition. As a result, many researchers
have focused on yield displacement calculations. Paulay et al. [8], for instance, estimated
the yield curvature in terms of the εy the yield strain of the steel at the extreme fiber
and εce the corresponding elastic concrete compression strain on the opposite edge of the
wall. Obviously, this estimation relies on the local response of the concrete and the steel
which might not always be accessible.
A large number of methods have been introduced to estimate the yield displacement
based on the global response. Majority of such methods, specifically those addressed in
design codes, rely on bilinearization techniques. ATC40 [1], for example, recommends to
bilinearize the force-deformation relationship by an elastic branch followed by an inclined
post-yield branch. The post-yield stiffness is found through minimizing the difference
between the area under the main curve and its idealization. The intersection is known to
be the global yield point. In contrast to ATC40, FEMA273 [2] suggests a secant stiffness
through 60% of the yield strength for the first branch. The rest of the procedure, though,
is the same as that of the ATC40. An application and a comparison of some of the
code-recommended methods can be found in [4, 5].
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As an application of the relation proposed in [9], Kazaz et al. [6] calculated the
yield displacement for several RC walls in a parametric study. As a result, they derived
empirical formulations for the calculation of the yield deformation components in terms
of the influential parameters.
Having reviewed all the above sources, it is clear that a lot of work has been devoted to
the calculation of the yield displacement for RC walls. However, probabilistic assessment
of the available methods still requires further studies. In this study, we aim at assessing
a selected number of the aforementioned methods applied to RC walls. To achieve this
goal, the data collected on RC walls for experience-based model quality evaluation of RC
walls was used. The yield displacement of the database walls was calculated according
to the chosen methods and the results were compared through uncertainty analysis.

2 Yield Displacement Estimates

A considerable number of the existing methods for yield displacement calculation, used
normally in practical design, rely on bilinearization techniques. Such methods tend to
idealize the nonlinear force-deformation relationship and result in simple estimates of the
yield displacement. Since methods of this kind are quite popular, specifically in design
codes, we chose three of them to perform an assessment study. The methods, as shown
in Figure 1, included the method proposed by Paulay and Priestley [8] and the methods
recommended by ATC40 [1] and FEMA273 [2]. Along with the aforementioned methods,
two empirical relationships introduced by Priestley et al. [9] and Kazaz et al. [6] were used
to compute the yield displacement. In what follows, a brief description of each method is
provided.
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Figure 1: Studied bilinearization methods for yield displacement estimation.

2.1 Paulay & Priestley (1992)

In 1992, Paulay & Priestley [8] suggested the effective secant stiffness to 75% of the ideal
yield strength for the elastic branch of the idealized force-deformation curve. Their model
assumed a zero post-yield stiffness (See Figure 1a). According to them, the procedure for
the calculation of the secant stiffness was introduced to allow for a reliable computation
of the interstory drifts in the design process.
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2.2 ATC40 (1996)

Later in 1996, as part of the capacity spectrum method for the design of structures,
ATC40 [1] recommended to idealize the the capacity curve by a bilinear curve. The code
recommended to use the initial stiffness of the force-deformation relationship as the elastic
stiffness to the yield point for the idealized curve (See Figure 1b). The post-yield stiffness
had to be found based on the equal energy absorption criterion. This concept dictates
that the energy absorbed by the real and idealized systems should be identical i.e. the
area under the real and the idealized curves should be equal.

2.3 FEMA273 (1997)

FEMA273 [2], introduced a bilinearization technique mainly to determine the structural
period. The stiffness of the elastic branch was found such that the idealized curve inter-
sects with the real curve at 60% of the yield strength (See Figure 1c). The stiffness of
the plastic branch was specified by minimizing the difference between the areas under the
curves. Again here, the equal energy absorption concept was used.

2.4 Priestley et al. (2007)

Priestley et al. [9] developed simplified relationships as approximations of the yield dis-
placement for the sake of displacement-based design of structures. The relationships
addressed several structural types including RC walls. Equation (1) conditions the yield
curvature of the wall on its length (Lw) and the yield strain of the flexural reinforce-
ment (εy). It should be noted that in the present study the yield displacement estimation
techniques were investigated. Therefore, the yield curvature was converted to the yield
displacement by assuming a uniform distribution of the curvature over 0.5Lw along the
height of the wall.

φy = 2.0(εy/Lw) (1)

2.5 Kazaz et al. (2012)

In a recent study in 2012, Kazaz et al. [6] proposed empirical relationships for deformation
limits of RC walls based on parametric numerical analysis. The parameters included the
shear-span-to-wall-length ratio, wall length, axial load ratio, normalized shear stress, the
amount of horizontal web reinforcement, and the amount of longitudinal reinforcement at
the confined boundary of the wall. Influential parameters were chosen according to the
correlation coefficients and used to generate a regression model. Equation (2) expresses
the yield drift ratio in terms of the wall length (Lw) and the longitudinal boundary
reinforcement ratio (ρb).

∆y = 0.125(e−0.116Lw)(ρ0.225b )) (2)
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3 Experience-Based Database of RC Structural Walls

As mentioned before, the database was developed for model quality evaluation purposes.
It includes nearly 300 wall specimens from about 48 sources (See Table 1 in [7]). Based
on the FEMA356 [3] definition, walls with aspect ratios less than 1.5 were considered as
squat which accounted for the majority of the walls (68%). Walls with aspect ratios more
than 3.0 were considered as slender according to the same guidelines. Only 5% of the
walls fell in this category. The rest of the walls were assumed to be transition walls with
aspect ratios between 1.5 and 3 (27% of the walls). In order to fulfill the purpose of the
database development, several input/output parameters were recorded for each specimen.
The input parameters included geometry, material, reinforcement layout and loading
properties of the walls. Three parameters defined the geometrical properties, namely,
H/L the wall aspect ratio and Ab/A (Lb/L) the boundary area (length) ratio. The
reinforcement layout was characterized through Asvw/Aw web vertical, Ashw/swtw web
horizontal, Asvb/Ab boundary vertical and Ashb/sbtb boundary horizontal reinforcement
ratios. The concrete compressive strength f ′c and the reinforcement yield strength fy
determined the material properties. Finally, the axial loading ratio was specified by
P/(f ′c.A).
In the above terms: Ab, Aw and A are the boundary, web and total areas, respectively.
Asvw and Ashw (Asvb and Ashb) denote, in the same order, the web (boundary) vertical
and horizontal reinforcement areas. sw and sb are the horizontal reinforcement spacing in
the web and boundary, respectively. The other parameters are presented schematically
in Figure 2.

L
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Boundary
elements
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Figure 2: Schematic of the studied walls and the corresponding parameters.

It should be noted that in the present study only the results from 136 walls, comprising
of 41% transition and 56% squat walls, are discussed. Table 1 presents the 5% and 95%
quantiles for the recorded parameters of these walls.
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Table 1: 5% and 95% Quantiles of the studied parameter ranges.
Squat walls Transition walls

Quantile
Parameters 5% 95% 5% 95%
1. Aspect ratio 0.5 1.4 1.8 3.0
2. Boundary area ratio 0.00 0.55 0.00 0.59
3. Boundary length ratio 0.00 0.40 0.00 0.43
4. Web vertical reinforcement ratio 0.0000 0.0158 0.0021 0.0150
5. Web horizontal reinforcement ratio 0.0013 0.0110 0.0024 0.0160
6. Boundary vertical reinforcement ratio 0.0000 0.0830 0.0000 0.0922
7. Boundary horizontal reinforcement ratio 0.0000 0.0227 0.0000 0.0382
8. Concrete compressive strength [MPa] 15.6 46.3 20.2 63.7
9. Steel yield strength [MPa] 294.2 664.1 216.0 753.0
10. Axial load ratio 0.00 0.14 0.00 0.24

For each wall in the database the force-deformation relationship was also recorded as the
main output. Various output parameters (such as the yield/ultimate point, ductility and
so forth) could be derived from the mentioned relationships. Such parameters characterize
the behavior of RC walls. Therefore, their study leads to a better understanding of this
behavior. Here, we focus on the yield displacement calculation based on the selected
methods described in the previous section. More information regarding the database can
be found in [7].

4 Discussion of the Results

As mentioned before, five different methods of calculating the yield displacement were
applied to the RC walls collected in the database. For the bilinearization methods, the
backbone force-deformation curves were used to find the idealized bilinear curves and the
corresponding corner yield points. During the application of the method by Paulay &
Priestley [8] the ideal yield strength was assumed to be equal to the maximum strength of
the specimens. In case of the methods based on formulations, the yield displacements were
calculated by replacing the variable parameters by the values taken from the database.
Figure 3 shows the studied force-deformation curves along with the computed yield points.
Two different categories can be observed, in this figure, based on how the methods esti-
mate the yield displacement. In the first category, including Paulay & Priestley [8] and
FEMA273 [2], the estimated yield displacements are in the vicinity of where a sever stiff-
ness reduction occurs i.e. the global yielding location. In the second category, however,
the results are not only limited to specific drift ratios but also unrelated to the global
yield point. Methods based on the formula from Priestley et al. [9] and Kazaz et al.
[6] fall in this category. The aforementioned misleading estimation could be due to the
fact that such formulations disregard parameters that might affect yielding. The method
based on ATC40, can be considered in between the two defined categories. Although, its
results seem to follow a pattern in a bounded range, the method generally fails because
of underestimation.
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Figure 3: Yield point located based on the studied methods (Base shear is normalized to
the maximum shear for each wall).
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In order to investigate the uncertainty properties of the methods each parameter range
was divided into three slices of equal probability. This is an step in performing variance-
based sensitivity analysis by direct approximation of the means. In each slice the mean
value and the variance of the samples were calculated. Figure 4 shows the distribution
of the means along the parameter ranges. The corresponding standard deviations are
presented in Tables 2 and 3. Figure 4 clearly shows that not only the methods have quite
different behaviors along the parameter ranges but also their differences depend on the
parameter value. Taking the boundary vertical reinforcement as an example, we can see
that convergence of the methods in the smaller values of the parameter is considerably
more than in the larger values. In addition to Figure 4, Tables 2 and 3 provide some
interesting information. According to these tables, for instance, the two underestimating
methods, namely ATC40 and Priestley et al. (2007), have the least scatter along all the
parameters. Such uncertainty/sensitivity properties can be used to rank the models based
on their competency. This is the topic of a future publication.
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Figure 4: Distribution of the average yield displacement along the studied parameter
ranges (Parameter ranges are normalized to fit in the [0 1] interval. Actual
parameter ranges are presented in Table 1).
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Table 2: Standard deviation of the yield displacement for the squat walls along the pa-
rameter ranges, [%].

Three slices along the parameter range:
Paulay ATC40 FEMA273 Kazaz Priestley

Para. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 0.1 0.6 0.2 0.0 0.1 0.0 0.1 0.6 0.3 0.2 0.2 0.2 0.0 0.1 0.1
2 0.5 0.2 0.1 0.0 0.1 0.0 0.5 0.2 0.1 0.2 0.1 0.0 0.1 0.1 0.0
3 0.4 0.5 0.2 0.0 0.0 0.1 0.4 0.5 0.2 0.2 0.1 0.1 0.1 0.1 0.0
4 0.4 0.2 0.4 0.1 0.0 0.0 0.4 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1
5 0.2 0.4 0.5 0.0 0.0 0.1 0.2 0.4 0.5 0.2 0.2 0.1 0.1 0.1 0.1
6 0.5 0.3 0.4 0.0 0.0 0.1 0.4 0.3 0.5 0.2 0.0 0.1 0.1 0.1 0.1
7 0.4 0.5 0.2 0.0 0.0 0.1 0.4 0.5 0.2 0.2 0.1 0.1 0.1 0.0 0.1
8 0.1 0.2 0.5 0.0 0.1 0.0 0.0 0.1 0.5 0.3 0.1 0.2 0.1 0.0 0.1
9 0.2 0.4 0.5 0.0 0.1 0.0 0.1 0.4 0.5 0.3 0.2 0.1 0.0 0.0 0.0
10 0.2 0.3 0.6 0.1 0.0 0.0 0.3 0.2 0.6 0.1 0.1 0.3 0.1 0.1 0.1
Parameters

1: Aspect ratio 2: Boundary area ratio

3: Boundary length ratio 4: Web vertical reinforcement ratio

5: Web horizontal reinforcement ratio 6: Boundary vertical reinforcement ratio

7: Boundary horizontal reinforcement ratio 8: Concrete compressive strength [MPa]

9: Steel yield strength [MPa] 10: Axial load ratio

Table 3: Standard deviation of the yield displacement for the transition walls along the
parameter ranges, [%].

Three slices along the parameter range:
Paulay ATC40 FEMA273 Kazaz Priestley

Para. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 0.2 0.2 0.3 0.0 0.0 0.1 0.3 0.2 0.2 0.2 0.1 0.2 0.1 0.0 0.1
2 0.3 0.2 0.2 0.1 0.1 0.0 0.2 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.0
3 0.2 0.2 0.2 0.0 0.1 0.0 0.2 0.2 0.3 0.2 0.1 0.0 0.1 0.0 0.1
4 0.2 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.3 0.2 0.1 0.2 0.1 0.1 0.1
5 0.1 0.2 0.2 0.0 0.0 0.1 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.0
6 0.1 0.2 0.2 0.0 0.1 0.1 0.1 0.3 0.2 0.2 0.0 0.1 0.1 0.1 0.1
7 0.3 0.3 0.1 0.0 0.0 0.1 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.1
8 0.3 0.3 0.1 0.1 0.1 0.0 0.2 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1
9 0.2 0.3 0.2 0.1 0.1 0.0 0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.0 0.1
10 0.2 0.3 0.2 0.0 0.0 0.1 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1
Parameters

1: Aspect ratio 2: Boundary area ratio

3: Boundary length ratio 4: Web vertical reinforcement ratio

5: Web horizontal reinforcement ratio 6: Boundary vertical reinforcement ratio

7: Boundary horizontal reinforcement ratio 8: Concrete compressive strength [MPa]

9: Steel yield strength [MPa] 10: Axial load ratio
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5 Conclusions

The yield displacement was computed according to five different methods for a collection of
RC walls which belonged to an experience-based database. Comparison of the methods
based on the data taken from experience-based database facilitates the reliability and
quality assessment of the methods. Comparison of the results from different methods
revealed that the methods based on the global response are more successful in predicting
the global yielding phenomena. These methods are mainly working with bilinearization
techniques. The methods based on local response tend to estimate the same yield drift
ratios for different walls which can be far from the physical yielding. This might be a result
of ignoring several parameters in the formation of the relationship for yield displacement
calculation.
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Abstract Nowadays there is an on-going discussion about piping safety for dikes in the
Netherlands. Relief wells represent an attractive solution as mitigation measure against
piping, saving hinterland space. Nevertheless, they have been disregarded due to the
uncertainties in its performance over its life cycle. The aim of this contribution is to
demonstrate a probabilistic design of relief wells systems using fully and approximated
probabilistic methods. We compare the results with the reliability target for piping as
set in the Netherlands. For this purpose, statistical parameters of the influencing vari-
ables were studied, using collected data from existing projects or field observations in the
Netherlands. Within this, we used the the design approach for relief wells, as proposed
by U.S. Army Corps of Engineers.

1 Introduction

Netherlands is historically known for its continuous battle against flooding. The Nether-
lands has 3,600 km of dikes and dunes. These primary flood defences given in figure 1 are
evaluated every five years. According to the last assessment of primary flood defences in
2013 [3], 680 km of dikes do not fulfil these given safety requirements.

Piping is a type of regressive erosion underneath a dike. This erosion process starts
downstream and progresses upstream until it reaches the water source (e.g. river), creating
pipes underneath the structure, which could lead to its collapse.

Up to now, design methods have been based on the use of semi-probabilistic safety factors
for load and resistance parameters. These different safety factors are based on expert
knowledge or probabilistic analyses on an acceptable low probability of failure. Latest
developments in reliability (probabilistic) based design and the possibility to perform
numerous computations allow introducing uncertainties from all the involved variables
into the performance functions. This allows determining the probability of failure of the
system, which will lead towards a more "rational" design, without the need of safety
factors, which sometimes are not specified on design codes.

This contribution focuses on the probabilistic based design of relief wells. This includes
the basics for the design of relief wells, the discussion of the limitations and strength of
the proposed approach and a case study at the end of this contribution.
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Figure 1: Safety standards per dike ring area in the Netherlands, [9].

2 Relief wells

Relief wells are drainage systems in confined aquifers as shown in figure 2; relief wells are
one of the possible mitigation measure against failure due to the piping mechanism. They
consist of a riser pipe drilled in the soil through the impervious strata until the previous
strata, allowing the underwater to reach the free surface, relieving the pore water pressure.
Screens and filters are needed in order to avoid loss of coarse fine material and prevent
clogging, which can lead to a decrease in wells’ efficiency. A system of partially or fully
penetrated wells is needed in order to obtain a reduced ground-water level and to ensure
an allowable level. The goal of this design is to find the position of such wells in order to
acquire the design requirements.

2.1 Design approach for relief wells

In general, one can distinguish between two system of relief wells: the fully penetrated
wells in figure 3 (a) and the partially penetrated wells in figure 3 (b). We assume that
the drawdown of the hydraulic head in relief wells is in accordance to Dupuit Forchheimer
assumption [1]. In the case of fully penetrated wells in figure 3 (a) the maximum hinterland
head will always occur midway between wells. For partially penetrated wells in figure 3 (b)
the efficiency is reduced through a smaller available flow discharge. Additionally, partial
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Figure 2: Nomenclature for relief wells system.

(a) (b)

Figure 3: Hydraulic head in relief wells system for fully penetrated wells (a) and partially
penetrated wells (b).

penetration induces a vertical flow and increases the velocity in the vicinity of the well;
this increases the head losses. This effect decreases while moving away from the well and
leads the maximum head to be on wells’ plane.

We use the semi-empirical method, which is proposed by USACE [11], to evaluate the
potential at the exit point in a multiple well systems. The procedure and formulas to
apply are described in detail at [5]. We consider the head at well’s plane Hav and the
head between wells Hm given in equation 1 and 2, which are used to calculate net seepage
slope ∆M . Figures 2 and 3 shows the head at well’s plane Hav and the head between
wells Hm for fully and partially penetrated wells.

Hav = a ·∆M · θa +Hw (1)

Hm = a ·∆M · θm +Hw (2)

∆M = f(H,Hav, S,X3) (3)

In equation 1 and 2 a refers to the well spacing given in figure 3. The net seepage slope
(∆M) is defined as the difference between the slope formed in front of the well; from ∆H
and Hav , and the hinterland slope in figure 2. θa and θm are the so called well factors
which are function of: D/a, W/D and a/rw. The hydraulic heads (Hav and Hm) are
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corrected by adding the well losses Hw. The rest of the involved variables are given in the
appendix.

2.2 Limitations of USACE method

Using the proposed USACE method for the design of relief wells, one has to keep the
limitations of this approach in mind. The main limitation of the USACE method is the
assumption of laminar flow. According to [1], we also assume 1 as a maximum Reynolds
number value, which is a safe limit taking into account that the Reynolds number is highly
sensitive to sand characteristic diameter. The method shows for practical application a
limitation due to well factors which were determined for a given range of the ratio between
well spacing (a) and aquifer’s thickness (0.25 < D/a < 4); this limits to find the solution
in between those limits. These losses can be estimated from experimental data, given
in [10].

3 Probabilistic design of relief wells system

In order to reduce the complexity of the given system of relief wells, we consider only
heave and uplift in the sequel case studies. The probability of failure of the system Pf is,
therefore, a parallel system of the probability of failure for uplift Pf,u and for heave Pf,h
given in equation 4. We do not consider piping because there is not a method to consider
this mechanism when drainage systems are applied.

Pf = Pfu ∩ Pfh (4)

We use the FORM and the Monte-Carlo approach for the case of piping mechanism under
a dike.

3.1 Limit state functions

The limit state function defines the ultimate state of a mechanism, which is the boundary
between desirable and undesirable performance of the mechanism considered. High water
pressure in the sand layer under the impervious strata (blanket) can cause uplifting and
even cracking of this layer. The limit state function for uplift is defined by the difference
of resistance, which is the vertical effective stress at the bottom of the cover layer, and
the load, which is the average head of the well Hav and the average head between wells
Hm (equation 5). Heave can only occur, if the vertical gradient at the exit point exceeds
the critical value for heave ic. The limit state equation compares the critical gradient for
heave and the existing vertical gradient on the blanket as given in equation 6.

Zu =
d · (γs − γwater)

γwater
−max{Hav, Hm} (5)

Zh = ic −
max{Hav, Hm}

d
(6)
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We use equation 7 within the Monte-Carlo approach for the simulation of the combination
of uplift and heave.

Zu+h = max{Zu, Zh} > 0 (7)

Additionally, we use the established Hohenbichler Rackwitz approach [2] to combine the
uplift and heave mechanism within FORM.

3.2 Random variables

The basis for random variables are given in [4] and [6,7]. We assume the gravity acceler-
ation g, the well radius rw, the well thickness tp and the specific weight of the water γw
as deterministic variables. We summarize the random variables with type of distribution,
mean value and standard deviation in table 1.

3.3 Target reliability for piping

In order to obtain a probabilistic design we set our target based on the reliability of the
system. Reliability is a measure of the probability that our system does not fail. The
reliability index is defined as:

β = −Φ−1(Pf ) (8)

Herein,β is the reliability index, Φ−1 is the inverse of the standard normal cumulative
distribution function, and Pf is the probability of failure of our system.

Dikes are usually long structures, which are influenced by longitudinal spatial variations.
This spatial variation is considered via the length effect. The length effect is defined

Table 1: Distribution type of the random variables, mean values µ, standard deviations σ
used for the design of the relief wells system in case study A and case study B.

pdf Case study A Case study B
µ σ µ σ

γcover [kN/m3] normal 16.00 1.60 17.10 1.70
γw [kN/m3] determ. 10.00 - 10.00 -
d [m] lognormal 3.00 0.15 4.11 1.23
D [m] normal 26.30 5.05 9.30 3.00
kf [m/s] lognormal 1.74·10-4 3.29·10-4 5.79 ·10-4 7.56·10-4

kb [m/s] lognormal 1.16·10 -6 1.16·10 -6 1.16·10-6 1.16·10-6

hr [m] Gumbel -3.79 0.30 -8.45 0.30
hp [m] normal 4.30 0.25 8.70 0.10
He [m] lognormal 0.05 0.05 0.05 0.05
S [m] normal 28.50 3.42 22.86 2.29
C [-] normal 125 10 125 10
rw [m] normal 0.15 0.00 0.15 0.00
ic [-] lognormal 0.70 0.10 0.70 0.10
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as the increase of the failure probability with the length of the dike due to imperfect
correlations and/or independence between different cross sections and/or elements [8].
This indicates that decrease of the system reliability with the increase of its length. In
order to be able to perform a probabilistic design, the reliability target has to be defined.
Different researches [8] developed the formulation presented on equation 9 for translating
dike ring requirement 1 into a (local) cross section safety requirement for piping and
uplift.

Padm,loc =
0.1 · Padm,ring
1 + α

leq
∗ Ldr,s

(9)

Herein, Padm,loc stands for the local admissible failure probability, Padm,ring for the ad-
missible failure probability for the dike ring requirements, α

leq
is the length effect factor,

and Ldr,s is the length of the dike that is sensitive to the considered mechanism. Among
others, [8] reports the ratio is α/leq = 0.0028 for piping and α/leq = 0.0045 for uplift.

4 Case studies

In this section we investigate the design of relief wells within a probabilistic based design
framework in two case studies. We selected a cross section located in dike ring 36 for
case study A and and a cross section in dike ring 52 for case study B, given in figure 1.
The data for these two locations are given in table 1. One can derive from figure 1 that
both locations have a required probability of failure of 1/1, 250 years. For both, 10 km of
the dike stretches, which are sensitive to piping are considered and one can calculate the
target reliability βadm,loc = 4.5 using equation 9. We investigate several combinations of
well spacing and well penetration in order to cover all possible combinations. We show the
results of case study A and B in figure 4. The reliability index β is plotted as contour lines
among the possible combinations of well spacing a and well penetration W/D, delimiting
zones with equal reliability target. From the results we can derive that large ratios W/D
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Figure 4: Ratio of well penetration W and thickness of the aquifer D in relation to the
well distances a for different reliability indices β for case study A (a) and case
study B (b).

and small well distances a show high reliability indices. For the investigated cases one
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can see that in case of a reliability index β ≥ 4.5 fully penetration is needed (figure 4).

The FORM-sensitivity factors α2 for the investigated cases are given in figure 5. We
present them grouped on basis of W/D and show them for two different ratios of D/a. It
can be observed that there is a significant scatter among the sensitivity factors. From fig-
ure 5 (a) and (d) we can observe that for partial well penetration the blanket permeability
is the driven variable. For fully penetration, entrance losses are the driven variable. On
the other hand, in 5 (d), larger well spacing, blanket and aquifer permeability’s are the
driven variables despite well penetration. In case of having small well spacing one can see
in 5 (b) that the influence of the specific weight of the blanket is lower than when having
larger well spacing.
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Figure 5: Sensitivity factors for cases for different well penetration D/a =1.6 in case study
A (a), D/a =2.6 in case study A (b), D/a =0.6 in case study B (c) and D/a
=0.46 in case study B (d).

5 Conclusions

This contribution presents the application of a probabilistic design of relief wells for piping
mitigation solution. Within this, we use the USACE relief wells’ design procedure in the
framework of a probabilistic based design. Herein, the length effect due to the soil spatial
variability is considered, as well as the combination of the sub-failure modes heave and
uplift as a parallel system to achieve piping failure. Two case studies were investigated,
and each uncertainty studied to identify which are the most important and influential in
the evaluation of the performance of relief wells. FORM-sensitivity coefficients show that,

229



12th International Probabilistic Workshop

using USACE method, the blanket and the aquifer permeability, as well as the hydraulic
losses, are the dominant variables (from the ’load’ side). However, a high discrepancy
between these sensitivity coefficients was found for ’strength’ side in partially and fully
penetrated wells. As result of the reliability analysis, graphs like 4 shows the appropriate
combinations of the design variables which fulfil our safety requirements. The optimum
alternative should then be chosen after a cost analysis optimization, the core of such
analysis can be found in [5].
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Abstract. This paper presents a probabilistic framework, referred to as the MC-
MELODIE hydrologic flow and contaminant transport code, for analyzing flow and
transport behavior in the context of intermediate-level long-lived waste and high level
waste disposal foreseen in a deep geological formation at the Meuse/Haute-Marne site in
France. The flow and transport framework includes geological features, detailed drifts,
and shaft/ramp configurations in the host formation. One-million-year probabilistic sim-
ulations, considering normal and altered evolution scenarios, showed ∼5 to 6 orders of
magnitude variation in peak activity fluxes, with peaks occurring mainly in a few hun-
dreds of thousands of years. Scatter plots and regression equations revealed that only a
few sampled parameters contribute significantly to the uncertainty in peak activity fluxes.

1 Introduction

In December 2005, the French national radioactive waste management agency (Andra)
presented to the French government the results of a feasibility study for a radioactive waste
disposal facility (i.e., repository) for intermediate-level, long-lived waste (IL-LLW) and
high level waste (HLW) in a deep geological formation at the Meuse/Haute-Marne (MHM)
site in France [2, 1], called the “Cigéo project.” The 2005 study was later updated to take
into account, notably, a revision of the architecture design and additional knowledge
acquired on the host formation’s properties [3]. In support of its technical reviews of this
project, the French institute for radiological protection and nuclear safety (IRSN) has
carried out extensive but focused field-scale experimental and modelling studies [6, 7].

The disposal facility, consisting of a natural and an engineered system, is proposed to
be located in the argillaceous Callovo-Oxfordian (COx) formation. Andra’s reports [2,
1] describe the COx as a low-permeability formation that is homogeneous over a large
area, has few to no faults, and has very low water flow. The overlying and underlying
limestone formations are reported to have low permeability and rather slow water flow
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rates. These characteristics are expected to prevail over a 250-km2 area called the “zone
de transposition”.

Mined openings in the low-permeability host formation can represent preferential flow
paths. The engineered system isolates waste containers from water flow using low-
permeability clayey materials, among other features. Such materials, if emplaced at the
entrance of the disposal cells (cell seals and plugs), in the drifts (drift seals), and in the
shafts and ramps at the level of the top of the COx formation (shaft and ramp seals),
could minimize water flow along the axes of the engineered components of the disposal
facility. Limiting such a flow would, in turn, limit and delay the release and transport of
radionuclides to and through the shafts and ramps, and thus to the surface.

The current probabilistic modelling study aims at consolidating the deterministic mod-
elling approach commonly used in France, allowing verification that the various scenarios
considered in radionuclide migration modelling account for various possible situations as
well as for the remaining uncertainties. In fact, the knowledge of a repository’s hydrologic
system is inherently uncertain given, for example, the space scale of concern and the het-
erogeneity of the various parameters to be characterized. The outcome of any hydrologic
modelling is thus linked to this uncertainty. The cause–effect relationship between the
hydrologic system’s calculated performance and input parameter uncertainties must be
understood. Probabilistic analyses, especially those based on Monte Carlo (MC) methods,
can be effectively used as an avenue to understand trends and relationships in the model
outputs resulting from the uncertainty and variability in the input data. Such trends may
not be easily discerned from deterministic simulations.

Most probabilistic models rely on variants of the MC method because of the flexibili-
ties that MC methods offer: (i) the process or performance model complexity is not a
limitation, (ii) the performance function model does not need to be modified, (iii) large
parameter uncertainties can be propagated through the performance function model, (iv)
the full model output range is available for deriving statistics, and (v) any sampling-based
sensitivity analysis technique (e.g., regression-based methods) can readily be applied to
the results.

The objective of the current study is, therefore, to augment the deterministic IRSN flow
and transport models into a MC-based probabilistic framework model that calculates an
envelope of model outputs as opposed to a single model output. This paper (i) describes
the “MC-MELODIE” software used and the resulting probabilistic framework model de-
veloped by IRSN with assistance from the Center for Nuclear Waste Regulatory Analyses
(CNWRA R©) of Southwest Research Institute R© (SwRI R©), (ii) illustrates the analysis ap-
proach, and (iii) presents selected preliminary results.

2 IRSN’S MELODIE flow and transport model

The combined characteristics of the radionuclides, host formation, and engineered barrier
system are expected to control activity releases from the waste packages to the surround-
ing formations. Total activity release from a failed waste package will likely depend on
the interplay between diffusion rates, solubility limits, and decay rates. IRSN uses the
MELODIE software to simulate radionuclide transport within the COx host formation.
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IRSN also uses the MELODIE software to simulate flow and radionuclide transport at
a much larger scale, using calculated releases from the COx model described below as a
source term applied to a few grid cells. Although the MC-MELODIE approach considers
the nested models simultaneously; the present work focuses on just the COx model for
simplicity.

MELODIE Software
IRSN’s hydrologic flow and transport conceptualization is embodied in the MELODIE
software, a numerical tool developed by IRSN [4]. It is specifically developed for long-term
assessment of surface and subsurface radioactive waste repositories. MELODIE models
fluid flow and contaminant transport in porous media in 2 or 3 spatial dimensions (2D
or 3D). The software is designed to model a disposal site factoring in the main physical
and chemical characteristics. These are represented in simplified form, adapted to large
scales of time and space required for simulation. MELODIE assumes Darcy flow and the
transport model handles advection, diffusion, solubility, retention (retardation factor),
and radioactive decay chains.

COx Model
The COx model embodies details of the repository, including the shaft and ramp area
(Figure 3). In fact, IRSN developed a simplified representation of the facility to focus
on the IL-LLW zone, which is closest to the two shafts and two ramps. The overall
domain includes a 135-m thick COx host formation block that is 3 km by 2.6 km in the
horizontal. The repository is represented by 86 cells receiving radioactive waste. Each
cell is a 10× 10× 530 m drift. Waste packages are emplaced in the central 450 m of each
drift, then the drift is backfilled and sealed at its end with a 40-m plug. Each drift is
assumed to be surrounded by an excavation damaged zone (EDZ - where the permeability
is significantly larger than the undisturbed COx) grading into a micro-fissured zone (where
the permeability is slightly larger than the undisturbed COx), as shown in Figure 1 and
Table 1. Backfilled access drifts connect the 86 cells to a set of two backfilled ramps and
two backfilled shafts, which connect the facility to the surface. Due to the mineralogy of
the upper part of the COx formation (higher carbonate content), a micro-fissured zone
is expected to appear around the ramp and shaft seals, but an EDZ is not expected to
appear.

Boundary conditions include (i) a no-flow boundary on the four lateral sides and (ii) zero
activity concentration at the bottom and top faces. These top and bottom boundary
conditions maximize radionuclide releases to the overlying and underlying aquifers. At
the COx scale, the focus is primarily on two transfer pathways: (i) diffusive transport
through the host formation, and (ii) advective transport through the drifts to the exits
of the ramps and shafts. The source term is conservatively assumed to consist of one
radionuclide (I-129) instantaneously released in all 86 cells, primarily to understand the
transport behavior. I-129 is considered soluble and non-sorbing in all the porous media.
The repository and surrounding host formation are discretized into 2,001,391 node points
and 11,404,800 tetrahedral elements.

The parameters defining this system include the flow and transport properties of (i) the
COx host formation and (ii) the engineered system, as well as the hydraulic gradient
across the COx (for vertical upward flow). The COx flow and transport parameters
include permeability, kinematic porosity, and diffusion coefficient. The engineered system
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parameters include permeability, kinematic porosity, and diffusion coefficient associated
with drift, shaft and ramp backfill, concrete, seals, EDZ, and micro-fissured zone. Table 1
presents the values for the COx model’s input parameters.

3 MC-MELODIE

As described previously, MC-MELODIE is an MC-method-based probabilistic framework
that propagates model input parameter uncertainty and obtains an envelope of model
responses (i.e., the output of the performance function representing the hydrologic sys-
tem). The MC framework uses the MELODIE code for computing flow and transport as
the performance function. Each run of MELODIE in the MC-MELODIE framework is
a deterministic run. Consequently, each deterministic run is that of a computationally
intensive detailed hydrologic flow and transport model that involves the numerical solu-
tion of a system of partial differential equations. The MELODIE infrastructure remains
unchanged in the MC runs except that its parameters (or models, if specified) are changed
from realization to realization.

Sampling: The COx model simulation is computationally intensive, therefore MC-
MELODIE uses the Latin Hypercube Sampling (LHS) method [5] as a substitute for
the conventional MC method, which can be prohibitively expensive because of its require-
ment for a large number of realizations (i.e., deterministic model runs) to obtain stable
results. LHS’s sampling scheme promises to give the same level of coverage of the param-
eter uncertainty range as the simple sampling of the conventional MC method, but with
far fewer realizations (e.g., 100 realizations in the current study).

Selection of Input Parameters: MC-MELODIE includes a variety of statistical distribu-
tion functions to represent parametric uncertainty. However, since the deterministic model
has a large number of input parameters, constant values are assigned to parameters that
are well characterized (less uncertain), are known to have negligible variability, or are
known to minimally affect model outputs. For the current study, it was determined
whether a constant value or a specific probability distribution function was assigned to
a model parameter on the basis of qualitative reasoning, Andra’s published parameter
values [2, 1], and IRSN’s past experience gained through field studies and deterministic
sensitivity analysis studies [6, 7]. As Table 1 shows, the probability distribution func-
tions in the system model reflect the stochastic nature of the permeability values and the
diffusion coefficient for COx and selected zones associated with the engineered system.

The objective of the sensitivity study was to understand system behavior when using
combinations of conservative values deduced from extrema in the distribution ranges. In
the end, a total of 5 out of 26 parameters were randomly sampled from specified proba-
bility distribution functions. None of the sampled parameters were specified as partially
correlated to another sampled parameter; this approach can yield physical inconsistencies
and must be kept in mind when interpreting the calculation’s preliminary results.
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4 Results and discussion

Probabilistic results were obtained from a 100-realization MC simulation with LHS sam-
pling. This sample size was considered to be sufficiently large to give stable results
for 5 sampled parameters (i.e., the same trends that one would obtain with a larger
number of realizations) while maintaining computational efficiency. Each realization of
MC-MELODIE was a one-million-year simulation. The 100 realizations allowed testing
parameter extremes and parameter combinations for their potential to cause a simulation
to fail. Given the extreme values used, the MELODIE software demonstrated strong
robustness.

The MC-MELODIE code is typically operated using two simulations for each realization of
the parameters: (i) a steady-state flow simulation and (ii) a transient transport simulation.
The COx model is run in this dual-simulation mode. The average run time for the COx
model was 1.38 hr on a system with a Hex-core Xeon 5680 64-bit Westmere processor
with a core frequency of 3.33 GHz.

In order to understand the behavior of the disposal facility, radionuclide releases are
quantified at the outlets of the COx model. On the one hand, activity fluxes (reported
in Bq/yr) are estimated at the top and bottom of the COx to evaluate the amount of
radionuclides transferred, primarily by diffusion, from the waste packages to these bound-
aries through the rock; this allows evaluation of the capability of the COx to limit and
delay the radionuclide plume to the surrounding aquifers. On the other hand, activity
fluxes are assessed at the outlets of the shafts and ramps in order to quantify the amount
of radionuclides transferred through the drifts, primarily by advective transport. This
allows evaluation of the contribution of the seals to radionuclide transfer to the aquifers,
depending on hydraulic flows induced by variations of parameter combinations. An “al-
tered” scenario was also considered that assumes the seals are totally ineffective.

Several approaches for analyzing the simulation results based on scatterplots and re-
gressions were applied to help identify sensitivities and identify likely consequences. To
understand the sensitivity of the hydrologic model of the repository site to the input
parameters, scatter plots of individual sample parameter versus model output were ex-
amined visually as well as mathematically (i.e., through the computation of regression
coefficients) to determine which parameters have significant effects on the model predic-
tion of activity flux. If there is a discernible pattern (i.e., slope) in the scatter plot of the
values of a sampled input parameter and the corresponding model output values, then
the pattern indicates a certain influence of that input parameter on the output. Peak
activity flux in terms of magnitude and time of appearance was used as the performance
metric for identifying parameter influence on the model outputs.

Six release surfaces were tracked: the top and bottom of the COx and the top of the two
shafts and two ramps (Figure 2). The Top and Bottom pathway fluxes show a little over
one order of magnitude variation in the activity flux from various realizations. Within
each realization, the Top pathway has a slightly larger magnitude than the Bottom path-
way, consistent with diffusion-dominated transport slightly modified by the upward flow
through the COx. Figure 2 also shows that the peak activity fluxes for the Top and Bot-
tom pathways occur predominantly during the period from 100,000 to 1,000,000 yr. The
regression slopes suggest that only a few of these parameters contribute significantly to
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the uncertainty in peak activity flux. Fluxes calculated for the Top and Bottom pathways
most strongly correlate to the diffusion coefficient in the COx (Figure 3). Other parame-
ters that showed influence, to a much lesser degree, are the permeability of the COx and
the vertical upward flow. A few peaks appear before 100,000 yr due to combinations of low
porosity values and high diffusivity values in the COx, which are physically inconsistent,
leading to an overestimation in the diffusive transport in the host formation.

The shaft and ramp pathway fluxes show a variation of 4 and 6 orders of magnitude,
respectively (see Figure 2 for peak flux). The ramp pathways show the lowest activity
flux, with the shaft pathway activity fluxes approximately one order of magnitude larger,
due to the additional distance for radionuclide transfer to the ramp exit in comparison
with the shaft exit. The Top and Bottom pathway activity fluxes are 5 to 6 orders of
magnitude greater than the activity fluxes through the ramp and shaft pathways. Hence,
the Top and Bottom activity fluxes clearly dominate. The peak activity fluxes for the
ramp and shaft fluxes occur over a wider range than for the Top and Bottom pathways,
and show a large dependence on seal permeability (see Figure 3). Activity fluxes may
peak as early as 20,000 yr when the seal permeability is very large (corresponding to
an altered scenario for which the seals are considered ineffective). However, most of the
realizations with very small seal permeability have the activity fluxes still increasing at
1,000,000 yr.

The results show that the shaft and ramp fluxes are dependent on the COx permeability
as well as on the vertical upward gradient (i.e., COx providing water in the drifts), no-
tably for large seal permeability. The shaft and ramp pathway fluxes also show a small
negative dependence on the COx diffusion coefficient. This negative dependence arises
from a competition for the available I-129 between advective transport in the engineered
pathways and the much larger total diffusive flux in the host formation. Finally, the corre-
lation between shaft and ramp pathway fluxes and the input parameters is poorer than the
correlation with the host formation’s diffusivity. Factors that may reduce the correlation
include: (i) the small values of shaft and ramp pathway fluxes relative to the compet-
ing host formation’s flux, leading to a loss of precision; and (ii) the coarse resolution of
diffusion pathways in the drift seals and EDZ, leading to numerical inaccuracy.

As stated previously, a set of 100 Monte Carlo realizations was considered adequate for
the current analyses. The parameters showing poor regression fit (e.g., R2 < 0.5) as such
validate our intuition. However, larger LHS sample sets or the Bootstrap method could
be used in the future to determine if the R2 values for the parameters will improve.

5 Conclusions

MC-MELODIE was successfully developed as a probabilistic, detailed, and computation-
ally intensive hydrologic flow and contaminant transport model. By providing an avenue
for including the full range of uncertainty in parameters, this framework model is capable
of assessing the performance of the hydrologic system under a combination of conser-
vative and realistic conditions. The model was successfully used to (i) understand the
relationships between the envelope of model output values and the range of input value
combinations and (ii) determine which parameters significantly influence flow and trans-
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port in the hydrologic system. The probabilistic approach has been helpful in (i) testing
the deterministic model for resiliency against extreme parameter values and (ii) adjusting
numerical criteria accordingly to avoid code failures. The COx model showed, consid-
ering normal and altered evolution scenarios, <2 orders of magnitude variation in peak
activity fluxes through the host rock and ∼5 to 6 orders of magnitude variation through
engineered features. Peak fluxes occur mainly in a few hundreds of thousands of years,
and are typically 1 to 6 orders of magnitude smaller in the engineered features than in
the host rock. Scatter plots and regression equations identified a few sampled parame-
ters contributing significantly to the uncertainty in peak activity fluxes, particularly the
diffusion coefficient in the COx. A future paper will highlight other sensitivity analysis
methods applied for identifying parameters significant to activity flux.
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Material Porosity Hydraulic Conductivity
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log T [3.15 × 10−7,

1.58 × 10−5,
3.15 × 10−5]*

logN [2.5× 10−4,
1.58 × 10−2] 6 0.6

— Vertical-to-horizontal
ratio of 0.5

—

EDZ 0.1 log T [3.15 × 10−3,
0.157, 3.15]

2.21× 10−3 10 1

Micro-fissured
zone

0.1 3.15× 10−4 2.21× 10−3 10 1

Seals 0.18
log T [3.15 × 10−4,

3.15 × 10−4,
3.15 × 10−1]

3.15× 10−3 4 0.4

Backfill 0.1 logU [3.15 × 10−1,
3.15 × 101]

6.31× 10−2 10 1

* logU [] = log–uniform[min,max]; log T [] = log–triangular[min, peak,max]; logN [] =
log–normal[min,max]. Min and max are the 0.1 and 99.9 percentile values, respectively.

Table 1: Flow and Transport Properties for the Normal and Altered Cases

Figure 1: Layout of the COx model.

Figure 2: Peak Activity Release for
Each Realization and Pathway. The
Six Pathways for Each Realization Are
Connected With a Colored Line.
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Figure 3: Scatter plots along with regression fits of COx model parameter (diff: diffusion
coefficient in the COx; Q COx: vertical upward gradient; KCOx: permeability in
the COx; K EDZ: permeability in the EDZ; K back: permeability in the backfill;
K seal: permeability in the seals) with the flux (y axis values) from the Top and
Bottom pathways (top figures) and Shaft and Ramp pathways (bottom figures).
Each figure includes the equation for the regression line.
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Abstract. In civil engineering experimental models are used for the parameter identifi-
cation, validation/verification of numerical models and study of the behaviour of reality.
All these activities are strongly connected with the development of experimental activity,
where measurement has a fundamental role. Experimental models are usually support the
development of mathematical models and provide measurement results with acceptable
quality.
This paper presents a methodology for the quality evaluation of experimental results. It
also suggests a generalization of standard approaches for characterizing experimental un-
certainty that carefully distinguishes and retains separate different forms of uncertainty.
In particular, the probabilistic approach can provide significant information during the
evaluation process. Therefore, methods for predicting the uncertainty, sensitivity, and
reliability are proposed for quality evaluation of experimental results. Furthermore, dif-
ferent uncertainties are to be taken into consideration when comparing different experi-
mental models with different level of complexity. For this purpose, different approaches
for predicting these uncertainties are implemented. Their contribution to the reliability of
materials testing are illustrated. From this study it can be concluded that the presented
methodology provides mathematical and computational tool and is able to quantify the
model uncertainty. Moreover, it is useful to improve measurement processes to promote
quality and capacity with decision-making.
Keywords: Measurement uncertainty, Metrology, Model quality, Quality, Reliability

1 Introduction

The civil engineering activities cover a wide and diversified range of domains, each one
dealing with specific issues where the experimental and monitoring components often play
an important role. In recent years, rapid change has been made in materials technology,
and the trend is set to continue with substantial investments being made world-wide
in materials development, processing and applications. The use of modern materials
pervades all of industry and has a strong influence on its competitiveness. However, to
convert these materials into competitive engineering products, the designer requires access
to appropriate design methodologies that specify material property requirements. The
need for reliable design data generated becomes crucial [7, 15]. Furthermore, quantitative
assessment of materials behaviour and performance is essential to achieve quality and
reliability of products [11]. Materials measurements have an important and widespread
impact.
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Experimental models are fundamental for guaranteeing the quality of scientific and in-
dustrial activities. The results of such measurements must be valid, comparable, and
reproducible; and their uncertainty is the quantitative measurement that expresses the
quality of such results. There are always variations of influences to measurements that are
not under full control. Each measurement has an uncertainty resulting from these vari-
ation. Quantifying the measurement uncertainty provides important information about
the reliability of measurement results and allows a comparison of different measurement
settings. However, there is a lack of a methodology for the quantitative assessment of the
quality of the results of experimental model and their exemplary implementation.

The conventional uncertainty analysis by the Root Sum Square (RSS) method is ofte n dif-
ficult in complex systems and requires approximation at each stage of processing, placing
serious doubts on the validity of the results. In accordance with the ISO/IEC 17025:1999
[2] standard, all calibrations or testing laboratories must have and apply procedures to
evaluate uncertainty in measurement as a guarantee of their technical competence. In
order to perform this evaluation, the ISO 98:1995 guide commonly known as the “Guide
to the expression of uncertainty in measurement” JCGM 100) [2] has been widely used
and accepted by the metrological accreditation organization. A variety of supplements
to GUM are being developed, which will progressively enter into effect. In the first of
these supplements (GUM S1) [3], an alternative procedure is described for the calculation
of uncertainties: the Monte Carlo Method (MCM). These include non-symmetric mea-
surement uncertainty distributions, non-linearity within the measurement system, input
dependency and systematic bias. The main elements of the formalism were originally put
forward by Weise et al.[9]. Later, the procedure was succinctly outlined by [5] and focused
on its relation to MCM described in [3]. Ref. [6] explained similarities and differences
between the GUM and GUM S1 approaches. Recently, there have been many papers that
apply a Bayesian updating to the evaluation of measurement uncertainty, e.g., [4, 9] and
books [8, 10] discuss on issues relevant to these general evaluation method. The approach
introduces a state of knowledge distribution about the quantity on interest and is de-
rived from prior information about the quantity as well as other influence quantity and
measured data, using probabilistic inversion or, inverse uncertainty evaluation [14].

This study is presented to create calculation methodology for determining the result of
measurement concerning tensile mechanical properties and their respective uncertainties.
The methodology has a systematic application associated with advanced metrology con-
cepts, aiming to a guarantee of metrological reliability to the results of the tensile prop-
erties, as well as the possibility of implementation in industrial laboratories, researches
centers and related tensile test firm. Uncertainty in calculating the correct values and the
reduction of the value, it is achieved indicator of the quality test results.

This paper introduces how to express the reliability of of measurement results referring
the concept of metrological traceability and associated measurement uncertainty.

2 Experimental Study

Tensile test results of a steel is defined as the relation between stress σ imposed on ma-
terial and strain ε response of the material. In this study, a electro-mechanical testing
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machine 250 kN maximum was used. The force accuracy class of the machine is ±0.5%,
deformation accuracy of the machine is ±0.5% displacement resolution 0.001 mm with
respect to EN ISO 7500-1 standard. Clip-on extensometer of class 0.5 (EN ISO 9542) is
used and has fixed gage length 50 mm, attached to a test specimen to measure elongation
or strain as the load is applied. For 0.5 class extensometer, calibration protocol provides
the total bias error of 1% or 25 µm, whichever is the greater, and this can lead to sig-
nificant errors at the low strain over which the mechanical properties are measured. The
test specimens were rods prepared from same material. Their dimensions were prepared
according to the tensile testing standard EN ISO 6892-1 [1] for metals. To get reliable
results five test specimens were tested. All samples were tested under identical testing
protocols. The test speeds were selected 1.2 mm/min. All tests were performed at 23 ◦C
± 1 ◦C temperature. The sample dimensions are measured using the vernier calliper with
an accuracy of ±0.02 mm, with resolution of 0.01 mm, repeatability of ±0.02 mm, with
flatness ±0.005 mm, Parallelism of ±0.008 mm, and rounding accuracy of ±0.1 mm.

3 Uncertainty Analyis

Generally, uncertainties in experimental data can be divided into two categories: sys-
tematic and random errors. It is a common assumption in this type of models (linear
and nonlinear regression) involving experimental measurements that the error sources are
mainly random and independent with no constant background errors (systematic errors).
However, from comparisons of different experimental data sources evidence is often found
of significant bias or calibration errors. The uncertainty analysis approach presented in
this work is based on the analysis of cumulative probability distributions for output vari-
ables of the models involved taking into account the effect of both types of errors. Figure 1
shows possible components which causes sources of uncertainties. The probability distri-
butions are obtained by performing Monte Carlo simulation coupled with appropriate
definitions for the random and systematic errors.

3.1 Uncertainty Propagation in Measurement Models

Propagation of uncertainty discuss types and step of measurement uncertainty and ways
to quantify them, shown in Figure 2, based on [2, 3].

Methods used for evaluation of measurement uncertainties are based on the concept of a
measurement equation:

Y = f(X1, X2..., XN). (1)

The input quantities Xi are all those that have an influence on the result of the mea-
surement, including correction factors as well as quantities that take into account other
variability sources. The output quantity is the measurand Y . The GUM character-
ize quantities using a normal (Gaussian) distribution, which allows measurement un-
certainty to be delimited by means of a coverage interval. Data consist of the estimates
xi = (x1, x2, ..., xN) and associated standard uncertainties µ = (µ1, .., µN). The functional
relation between the output quantity Y and the input quantities Xi must be linearized
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Figure 1: Different possible components of physical modeling and related uncertainty

 

Figure 2: The general method to evaluate measurement uncertainty based on [3]

by approximating it through the first order terms of the Taylor series in a neighborhood
of its estimates xi, denoted by a lower case letter:

Y = f(X1, X2..., XN) ∼= y = f(x1, x2..., xN) +
N∑

i=1

ciXi, (2)

244



12th International Probabilistic Workshop

where the coefficients ci are known as sensitivity coefficients:

ci =
∂f(X1, X22, ..., XN)

∂Xi

∣∣∣∣
x1,x2...,xN

, (3)

Once linearized, it is possible to use the law of propagation of uncertainty (LPU) [2, 3]:

µ2
s(y) =

N∑

i=1

(
∂f

∂xi

)
µ2
s(xi) + 2

N−1∑

i=1

N∑

j=i+1

(
∂f

∂xi

∂f

∂xj

)
µ(xi, xj). (4)

where
(
∂f
∂xi

)
is the sensitivity coefficient, m degree of freedom and N is the number of

input in measurement model and u(xi, , xj) are the possible covariances between them.
Sensitivity coefficients measure of how much change is produced in the measured by
changes in an input quantity. Mathematically, sensitivity coefficients are obtained from
partial derivatives of the model function f with respect to the input quantities. In par-
ticular, the sensitivity coefficient ci of the input quantity xi is given by which expresses
mathematically how much f changes given an infinitesimal change in xi.

Estimation of measurement uncertainty of tested bar for specified materials depends on
several error sources such as [12, 13, 14]

• measurement of test bar dimensions;

• measurement of tensile force;

• test temperature and loading rates in successive stages of tests;

• the method of gripping the test piece and axiality of the application of the force;

• the testing machine characteristics (stiffness, drive, control and method of opera-
tion);

• human and software errors associated with determination of the tensile properties;

• the material in homogeneity that exists even within a single processed batch ob-
tained from a single melt of material.

The first two error sources that are measurement of test bar dimensions and measurement
of tensile force have already been added into the measurement uncertainty calculations.
The calculations of other effects are very difficult due to the determination of all influ-
encing parameters. Instead of uncertainty calculations for all listed error sources, the
standard deviation of the test results can be used to calculate the measurement uncer-
tainty of all other parameters mentioned in the listed error sources. The test data covers
the influencing parameters.

As an example of a random uncertainty evaluation, consider an input quantity Xi whose
value is estimated from n independent observations Xi,k of Xi obtained under the same
conditions of measurement. In this case the input estimate xi is usually the sample mean:

xi = X̄i =
1

n

n∑

k=1

Xi,k (5)

and the standard uncertainty µ(xi) to be associated with xi is the estimated standard
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deviation of the mean:

µ(xi) = s(X̄i) =
1

n(n− 1)

n∑

k=1

(Xi,k − X̄i)
1/2. (6)

Also statistical analysis of the test results was done with the purpose of assessing their
reliability. The uncertainty calculations were made by using different references [2, 3, 12,
13, 14]. The uncertainty in measurements of the test parameter is calculated by standard
distribution formula.

µA = s(X̄i) = µrep (7)

Then, combined uncertainty (Ucombined) can be calculated then measurement uncertainty
for output quantities as shown below;

µcombined =
√
µ2(y) + µ2

rep (8)

The uncertainty of measurement is expressed as an expanded uncertainty with coverage
factor (see [3], which is depends upon the degree of freedom). The expanded uncer-
tainty of measurement is stated as the standard uncertainty of measurement multiplied
by the coverage factor k = 2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.

UE = k ∗ µcombined. (9)

4 Sample Calculation

The test result of the five test of rectangular specimen tested and result of sample calcu-
lation of tensile properties are given in Table 1. The calculation of measurement uncer-
tainties of the test results using equation from (1) to (8) and given in Table 2.

Table 1: Tensile test results for strucutural steel specimen.
Specimen Thickness Width Cross-section Tensile force Tensile strength
Nr. t, (mm) b, (mm) area ,A (mm2) F, (kN) (MPa)
1 8.515 19.752 168.188 84.304 501.250
2 8.439 19.873 167.712 84.044 501.120
3 8.353 19.716 163.957 74.865 456.615
4 8.582 19.851 169.210 79.940 472.430
5 8.513 19.851 169.008 79.971 473.180
X 8.480 19.764 167.613 80.608 480.919

The standard uncertainty with respect to force (µF ) is directly taken from calibration
certificate of material testing machine and uncertainty associated with caliper is also taken
from calibration certification of the caliper. The average thickness of the test specimen
is 8.480 mm, the average width is 19.764 mm, the average maximum force if 80.608 kN
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and the average tensile strength is 480.919 MPa. The tensile strength and uncertainty
in the result of tensile test are shown in Tables 1 and 2 as (480.919 ± 10.10) MPa.

Sample calculation shows that all of the uncertainty sources including dimensions of the
specimen, cross-section area, uncertainty of caliper, applied forces, repeatability of the
test results and related sensitivity coefficients calculated and they are important input
quantities for tensile strength model. In other words, its need more precise control over
safety factors; again, this is related to the reliability of test data. Reducing the scattering
range as well as increasing the comparability of data could be achieved through establish-
ing evaluation system since poor data reliability is partly due to an improper uncertainty
quantification.

Table 2: Calculation of sensitivity coefficients and uncertainties of the tensile testing.
cF cA cAC µσ UE
1/mm2 N/mm4 mm N/mm2 GPa
0.000041 -0.48 20.15 2.95 -
µF µA µAC µrep
0(N) mm2 mm2 N/mm2 -
411.18 20.15 0.03 5.80 10.10

where, cF is the sensitivity coefficient for applied force measurement; cA is the sensi-
tivity coefficient for cross-section measurement of test specimen; cAC is the sensitivity
coefficient for cross-section measurement of test specimen (cAC = t + b, t = thickness of
specimen, b = width of specimen); µF is the measurement uncertainty of applied force
taken directly from calibration certificates of machine; µA is the measurement uncertainty
of cross-section of test specimen and µAC is the measurement uncertainty of cross-section
of specimen associate with thickness and width.

The result of a measurement of a physical quantity it is a value attribute to a measurand
by measurement. When a result is informed, it should be indicated, clearly, if the same
refers to an indication, the uncorrected result, the correlated result or to the medium
value of several measurements and, complete expression on its measurement uncertainty.
In the case study, the results presented to proceed refer to the medium value of the
several obtained measurements of the studied mechanical properties, that is, the value
of Modulus of elasticity, yield strength, tensile strength elongation at maximum force
and elongation at fracture, added of information of its measurement uncertainty, for
a probability coverage of 95%. The Table 3 presents tahe value of the results of the
measurement of the mechanical properties of the strucural steel of IPE400. The variation
in modulus of elasticity expressed by the 3.30%, yield strength 2.74%, tensile strength
2.10%, which is acceptable limit. It is good practice in any test procedure to quote the
uncertainties associated with the measurement itself, but this is not always carried out
and steel rarely reported. For the tensile test of steel it is reasonably atraightforward to
make some estimate of the uncertainties associated with the test method.
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Table 3: Tensile test results for strucutural steel specimen.
Mechanical Symbol Results Uncertainty,%
properties k = 2
Modulus of elasticity E 201.10 GPa ±6.61 GPa
Yield strength Y S 351.16 MPa ±9.64 MPa
Tensile strength Rm 480.91 MPa ±10.10 MPa
% Elongation at Agt 20.60% ±0.53%
Maximum force
% Total elongation At 34.96% ±4.21%
fracture

5 Conclusions

An approach based on GUM was developed to analyze the effect of systematic and random
errors on computer models involving experimental measurements. The results from the
case studies presented show that the approach is able to distinguish which error type
has the dominant contribution to the total error on the uncertainty propagation through
the measurement model. It was shown that systematic errors present in experimental
measurements can play a very significant role in uncertainty propagation, an effect that is
traditionally ignored when estimating and using physical properties. Additionally, it was
observed that the effect of random and systematic errors on the uncertainty propagation is
additive, meaning that the error type with the largest effect clearly defines the uncertainty
propagated to the output variables of the model. In general, experimentalists have not
been concerned enough about systematic errors when reporting experimental or observable
data. It is found that these systematic errors are significant sources of uncertainty and
that more attention should be given to estimating them and using them in uncertainty
and sensitivity analyses.

This study shows effect of quality and uniformity of specimen and also error caused by
operator has a definite effect on total measurement uncertainty in most material tensile
testing. In addition to specimen, approved testing method, steady force measuring system
and periodically calibrated machine lowers the total measurement uncertainty.

Competent laboratories know the quality of their testing methods and the uncertainty
associated with the results. Measurement uncertainty is therefore an essential quality
feature for testing methods. Others, such as repeatability, reproducibility, robustness and
selectivity are also important for the characterisation of the overall quality of a testing
method.

In this study was to presents a methodology for determining the result of measurement
concerning tensile mechanical properties and their respective uncertainties. Such method-
ology, which has a possible systematic application, is associated with advanced metrology
concepts, aiming a guarantee of metrological reliability to the results of the tensile prop-
erties, as well as the possibility of implementation in industrial laboratories, researches
centers and in the Testing Laboratory Network.
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Thus, metrology probabilistic approach has mathematical and computational tools par-
ticularly suited to improve the quality of measurement thus fulfilling the growing techno-
logical demands of the modern society.
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Abstract

Within this investigation, we focused on analyses of the discharge data of the gauge Neu
Darchau (Elbe River), which is the most downstream discharge gauge of the Elbe River
before it becomes an estuary. We followed the questions, if the discharge characteristics of
the Elbe River have changed over the last decades and how much the design discharges (i.e.
HQ100) are affected by the latest extreme events in 2002, 2006, 2011 and 2013. Hence, we
conducted (i) trend estimations for different flood indicators, (ii) an assessment of time-
dependencies of the design discharge HQ100 by using extreme value statistics with both
block maxima and peak-over-threshold approaches and (iii) an estimation of confidence
levels for the time-dependent behavior of the design discharges by means of Monte-Carlo
simulations using autoregressive models. For the majority of the flood indicators an
increase in the HQ100 level over the last decades can be stated. The 2013 event leads to a
remarkable jump in the HQ100 events in all flood indicators. No HQ100 level exceeds the
upper (or lower) confidence band, thus no statistically significant changes can be stated
at the 90%-level. However, for many flood indicators there is clear tendency towards the
upper confidence bands.

1 Introduction

During the last decades several severe floods occurred in different river basins in Germany
(e.g. 1993 and 1995 Rhine; 1997 Odra; 1999, 2001, 2006 and 2013 Danube, 2002, 2006,
2011 and 2013 Elbe) [21]. In a public perception there seems to be a trend to more
frequent hydrological extreme events resulting in a rising flood hazard.

Within this investigation, we focus on detailed analyses of the discharge data of the gauge
Neu Darchau (Elbe River). The gauge Neu Darchau is the most downstream discharge
gauge of the Elbe River before it becomes an estuary (Fig. 1). The gauge is considered as
a benchmark for the total discharge of the Elbe River [25]. Thus, the discharge statistics
of this gauge is of special importance for all designing purposes downstream this location.
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Fig. 1: Location of the gauge Neu Darchau.

For the determination of design discharges, traditionally a stationary behaviour of the
flood regime is assumed and has to be assured. The severe flood events on 23 August
2002 (QNeu Darchau = 3410 m3/s), 9 April 2006 (QNeu Darchau = 3590 m3/s), 23 January
2011 (QNeu Darchau = 3593 m3/s), and 11 June 2013 (QNeu Darchau = 4070 m3/s) may lead
to the assumption, that more frequent extreme events are likely or at least a period
with a clustering of floods occurs. While the floods in 2006 and 2011 occurred within
the typical flood period (December – May), the severe floods in 2002 and 2013 occurred
during summer. It is worthwhile to mention, that the 2013 event is a new record, i.e. this
value is higher than all values observed before.

Thus, the questions arise if the discharge characteristics of the Elbe River have changed
over the last decades and how much the design discharges (i.e. the 100-yr return discharge)
are affected by the latest extreme events in 2002, 2006, 2011, and 2013?

Many recent studies focussed on trend estimations in flood magnitude, frequency and
seasonality of European or German rivers (e.g. [18, 19, 21, 22, 3, 26, 4] ; Mudelsee, 2004;
Petrow et al., 2009; Petrow and Merz, 2009; Beurton and Thieken, 2009; Stahl et al.,
2010; Bormann et al., 2011). Mudelsee et al. (2003) investigated discharge data sets
from the Elbe and Odra River for the past 80 to 150 years. For the Elbe River (gauge
Dresden), they found a decreasing trend in winter floods, while summer floods do not
show any significant trend.

Mudelsee (2004) analysed extreme floods in central Europe (namely the Elbe and Odra
River) over the past 500 years. In this context he focused on so-called Vb-cyclones,
which are responsible for heavy rainfall events in central Europe, especially in the summer
period. Based on the used data sets he find for both the Elbe and Odra River significantly
decreasing trends in winter flood risk and no significant trends in summer flood risk during
the twentieth century.

Petrow und Merz (2009) investigated flood time series for 145 discharge gauges in Germany
in the period of 1952 to 2002. For trend estimates, they studied eight flood indicators such
as annual maximum daily mean discharge, seasonal annual maximum daily mean discharge
for winter and summer season, peak-over-threshold magnitude and others. The locations
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of the gauges are more or less equally distributed over Germany. The individual names of
gauges are not listed in their paper, but looking at the plotted maps it is obvious, that the
gauge Neu Darchau was one of the analysed sites. For most flood indicators they found
no significant trends for the gauge Neu Darchau as for most gauges in the north-eastern
region of Germany, while a considerable fraction of basins in other German locations show
upward trends. Analysing at the seasonal behaviour, they found larger changes for winter
periods compared to summer periods.

Beurton and Thieken (2009) investigated the seasonal distribution of annual maximum
floods at 481 gauge stations across Germany. As a result, they created a map with
three regions representing homogeneous flood regimes. The Elbe River belongs to the so
called cluster B, which covers most parts of Germany. This flood regime is characterized
by spring and winter floods. In comparison to Cluster A (mainly westerly regions of
Germany), the maximum in December is shifted to March. However, winter is the most
important season for flooding.

In a recent study Stahl et al. (2010) investigated discharge trends from 441 small catch-
ments in 15 countries across Europe. Small catchments are defined as areas not exceeding
an area of 1000 km2. Thus, no data sets from the middle or lower Elbe River were
used. The investigated catchments in the easterly regions show negative trends in annual
discharges and positive trends for the winter season.

Bormann et al. (2011) conducted a spatial analysis of German discharge and flood stage
data. They used 78 gauges and most of the data sets do not show any significant trends
in any of the considered flood parameters. Looking more into detail, non-uniform trends
along the Elbe River were detected. The gauge Dresden shows a decreasing trend in
the annual maximum discharge of -3.9 m3/s/a from 1852 to 2005. The downstream
located gauge of Wittenberg shows an increasing trend of 11.96 m3/s/a from 1950 to
2003, whereas the gauge of Neu Darchau does not exhibit any significant trend from 1874
to 2005. However, the authors emphasize the strong dependence of the trend on the
underlying record length.

Interannual and decadal oscillations as well as correlations between discharge, precipita-
tion and other meteorological forcings (e.g. NAO) in the Elbe River basin are investigated
more in detail in recent years (e.g. Markovic, 2006; Kropp and Schellnhuber, 2011). In
analysing different Elbe River discharge time series from gauge Dresden to the downstream
gauge Neu Darchau, Markovic (2006) identified statistically significant low frequency os-
cillations with periods of 7.1 yrs and 10-14 yrs occurring additionally to the seasonal
cycle, indicating the occurrence of extended dry and wet cycles. In Kropp and Schellnhu-
ber (2011), numerous authors addressed long-term correlations in hydro-meteorological
variables showing that many discharge records in Europe and Germany are characterized
by such effects.

Interestingly, although the extreme values are of major importance for river training, flood
risk management and design purposes there is a lack of publications covering the aspect
of changes in extreme flood quantiles (e.g. HQ100). In this paper we would like to make
a contribution to close this gap.

In order to gain the above mentioned objectives we conduct the following steps (con-
strained to the gauge Neu Darchau):
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• trend estimations for different flood indicators

• assessment of time-dependent changes in design discharges (flood quantile HQ100)
by using extreme value statistics with both, block maxima (Generalized Extreme
Value distribution, GEV) and peak-over-threshold (Generalized Pareto distribution,
GPD) approach

• an estimation of confidence levels for the time-dependent behavior of the design
discharges by means of Monte-Carlo simulations using autoregressive models.

2 Data

2.1 Daily mean discharge data

For this study, discharge data from the gauge Neu Darchau at Elbe location 536.4 km
(Fig. 1) were obtained from the Water and Shipping Office Lauenburg (WSA Lauenburg),
which is the official gauge operator. The records comprise daily mean discharge values
from 1 November 1874 to 31 October 2013 (hydrological year in Germany: 1 November to
31 October), resulting in a time series covering 139 years without any gaps. The discharge
measurements operate regularly since 1874 without any discontinuities. Since 1 November
1997 data with a resolution in time of 15 minutes are available. Prior to that, several
measurements per day (not equally distributed) are the basis for the daily mean discharge
data. Since the catchment size amounts to 131,950 km3, these daily measurements are
also suitable to compute representative daily mean discharge data.

The most extreme flood in the official data set is on 25 March 1888 with HHQ = 4400
m3/s. Since it was a severe winter flood, it is known that during this event river icing
occurred in the Elbe River which significantly influenced the flood stage measurement
at gauge Neu Darchau (WSA Lauenburg, 2012) due to backwater effects. Hence, the
dedicated discharge of 4400 m3/s is also affected by river icing. For this flood event
the WSA Lauenburg provides a corrected peak discharge of 2310 m3/s on 24 March 1888
instead of 4400 m3/s on 25 March 1888 (Rölver, 2012), which allows for the incorrect flood
stage measurement. Although the corrected discharge is not officially fixed, we decided
to use this corrected value instead of the original value, since the original–and obviously
incorrect–value would significantly affect the extreme value statistics. Figure 2 illustrates
the corrected daily mean discharge series at gauge Neu Darchau from 1875 to 2013. Even
if the latest extreme events in 2002, 2006, 2011, and 2013 are very noticeable, the time
series reveals that extreme floods already occurred in a comparable magnitude in former
years. The overall mean of the daily mean discharge from 1875 to 2013 (hydrological
years) amounts to MQ = 710 m3/s with a standard deviation of s = 446 m3/s. The linear
trend with a standard error is 0.05 ± 0.05 m3/s/yr, which is a non-significant trend at
the 95% confidence level. In addition, we fitted a non-linear function to the time series,
using locally weighted scatterplot smoothing (LOWESS). The applied LOWESS function
fits simple models to localized subsets of the data using linear least-squares fitting and
a first-degree polynomial (Cleveland, 1981). The LOWESS results with a filter span of
10 years illustrate, that the series can be intersected into two periods. A first one from
1875 to about 1920, where a rather small variance exists, followed by a period up to
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Fig. 2: Daily mean discharge at gauge Neu Darchau from 1875 to 2013 with linear and
non-linear trend (LOWESS, span = 10 yrs).

the end with higher magnitudes. Interannual or decadal variations in discharges may be
explained to a certain extend by the North Atlantic Oscillation (NAO) (Villarini et al.,
2011; Kingston et al., 2006; Pociask-Karteczka 2006).

2.2 Flood indicators

Six flood indicators were analysed in this study using both, the block maxima and the
peak-over-threshold approach. The most common flood indicator in flood trend studies is
the annual maximum discharge, i.e. the largest daily mean discharge that occurs in each
hydrological year. This flood indicator is labelled as AMF. The annual maxima approach
has extensively been used in the past (e.g. Acero et al., 2011). However, it can be a
wasteful method if further data of extremes are available (Coles, 2001). Conversely, if no
extreme flood occurs within a year, the maximum value will still be selected. To overcome
these shortcomings, some alternative approaches came up in hydrological statistics. The
most prominent methods are the r-largest approach (e.g. Smith, 1986; Coles, 2001) and
the peak-over-threshold (POT) approach (e.g. Leadbetter, 1991; Bayliss and Jones, 1993;
Coles, 2001).

In the r-largest approach, not only the annual maximum values (r = 1) are considered
in the sample, but e.g. the two (r = 2) or three (r = 3) largest annual values. The
advantages and disadvantages of this method are obvious. Given a year with several
extreme floods, using the r-largest method extends the data basis by including more of
the available information concerning extreme discharge events. In contrast, if a year has
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no major floods, using the r-largest approach still considers the r-largest events of this
year within the sample.

Discharge datasets can exhibit dependencies that are related to the same event that
caused these floods. By creating a sample of the r-largest values per year, one has to
ensure independence of the selected events, which means that the events should have a
certain distance in time (declustering time). Following Svensson et al. (2005), we use
a declustering time of 20 days, since the catchment area of the gauge Neu Darchau is
>100.000 km3. In this study we compute the annual r-largest samples considering the r
= 2 and r = 3 largest events per year, hereafter referred to as AMFr2 and AMFr3.

The POT approach (also known as partial duration series) provides a more flexible rep-
resentation of floods compared to the AMF approach, since it accounts for stochastically
and unequally distributed occurrences of floods. A POT sample is created using all values
exceeding a predefined threshold u. The main advantage of the POT approach is there-
fore the consideration of all severe floods within a flood intensive year, while years with
no extreme events are neglected. Thus, a POT time series captures more information
concerning the entire flood characteristics of a river than using AMF. The key challenge
of the POT approach, however, is the threshold selection, since statistical methods (e.g.
extreme value distribution) may react very sensitive to different thresholds. Selecting
suitable thresholds is therefore a complex task representing the main difficulty associ-
ated with the POT approach (Lang et al., 1999). Additionally, the independence of the
individual events has to be assured as well.

Lang et al. (1999) reviewed some threshold selection techniques. An important factor in
the threshold selection is the mean number N of events per year. They recommend that
there should be at least a mean number of floods of N = 2 or 3 per year. A common
threshold selection criteria is to use a standard frequency factor f, so that the threshold
can be estimated from the daily mean discharge series Q by:

u = µQ + f · σQ

where µQ and σQ are the mean and standard deviation of the daily mean discharge series
Q, respectively. Rosbjerg and Madsen (1992) prefer to use a standard frequency factor of
f = 3, but take care for the condition N > 2.

For the daily mean discharge data of gauge Neu Darchau Table 1 shows a compilation
of a range of standard frequency factors, thresholds and the resulting mean number of
floods per year. Since the factor 3 results in less than 1 value per year (not shown), we
reject this factor. Instead we use the standard frequency factors f = 0.78, f = 1.20 and
f = 2.18, which lead to a mean number of floods per year of N = 3, N = 2, and N = 1,
respectively. Hence, we name the partial series as POT-0.78, POT-1.23, and POT-2.18.
Note: Even if the POT-0.78 series has in mean 3 flood events per year, the series is not
equal to AMFr3. The same is true for the other samples.

The trend analyses of the different flood indicators show, that there is no evidence for
any long-term trend in the flood indicators. All trend values are not significant, with the
exception of the POT-0.78 series at the 1σ-level.
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Standard frequency
factor

f

Threshold

U

(Mean) number of
floods per year

N

Name
Trend with standard
error (1875-2013)

0.78 1060 m3/s 3 POT-0.78 1.00 ± 0.68 m3/s/yr
1.23 1260 m3/s 2 POT-1.23 0.68 ± 0.79 m3/s/yr
2.18 1685 m3/s 1 POT-2.18 0.11 ± 1.05 m3/s/yr
- - 1 AMF 0.08 ± 1.10 m3/s/yr
- - 2 AMFr2 0.09 ± 1.10 m3/s/yr
- - 3 AMFr3 0.10 ± 0.89 m3/s/yr

Table 1: Compilation of thresholds, standard frequency factors and the resulting number
of floods per year for the six flood indicators at gauge Neu Darchau based on
daily mean discharge data

3 Extreme value methods

Nowadays, the Generalized Extreme Value distribution (GEV) and the Generalized Pareto
distribution (GPD) have established as the main distribution functions for extreme value
statistics (e.g. Coles, 2001). A series of block maxima is described by the GEV which is
defined as

GEV = exp

(
−
(
1 + ξ

(
(z − µ)

σ

))−1
ξ

)

with the location parameter µ, the scale parameter σ, the shape parameter ξ and the block
maxima values considered, denoted as z. This formula combines the Gumbel, Fréchet and
Weibull families into one single family. Each family has a location µ and a scale parameter
σ while the Fréchet and the Weibull families additionally have a shape parameter ξ (Coles,
2001).

The use of POT methods is based on the GPD. The GPD encompasses a number of
common extreme functions (Hawkes et al., 2008) and is defined as

GPD = 1−
(
1 +

ξy

σ̃

) 1
ξ

with

σ̃ = σ + ξ (u− µ)

with the location parameter µ , the scale parameter σ, the shape parameter ξ and thresh-
old value (Coles, 2001).

The parameter estimation method in this paper is maximum likelihood estimation (MLE)
for all model parameters (Smith, 1986; Hosking and Wallis, 1997; Davison and Smith,
1990). The MLE is a general and flexible method to estimate the unknown parameters of
a distribution (Coles, 2001). However, according to Katz et al. (2002), the performance
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of MLE can be extremely erratic for small samples (n ≤ 25), especially when estimating
extreme quantiles of the GEV distribution.

As introduced in Section 1 we try to clarify, if the extreme floods in 2002, 2006, 2011 and
2013 affect the extreme value statistics and if design discharges for engineering tasks (i.e.
HQ100) have changed over the last decades. Time-dependent changes in extreme value
statistics can be investigated using a non-stationary extreme value approach (e.g. Mendez
et al., 2007; Mudersbach and Jensen, 2010). However, until now the non-stationary
methods are not common in hydrological practice. Thus, we use a quasi non-stationary
extreme value approach in order to analyse the influence of single extreme events on
the extreme value statistics. The quasi non-stationary approach is based on the above
mentioned stationary extreme value distributions (i.e. GEV and GPD) and a stepwise
analysis of different time series lengths. Firstly, stationary extreme value statistics are
computed for a time period from 1875 to 1950. Afterwards, the time series is extended
step by step by one year until the entire time series from 1875 to 2013 is analysed. This
procedure reflects the real situation in statistical or engineering practice, where design
values have to be steadily verified due to new data. The whole process is shown in Fig. 3
(left).

As a result of the quasi non-stationary method time series of the HQ100 for the different
flood indicators will appear. Only with these information one can assess if any time-
dependent behaviour is existing, but the question which can not be answered is, if the
observed changes are significant or not. To do so, we need appropriate confidence bands
for the HQ100 time series. The basic idea is now the following: Having a large set of
synthetic daily mean discharge data of the gauge Neu Darchau, we are able to compare
the calculated HQ100 levels from the original series with quantiles of the HQ100 values
calculated from the large synthetic data set. Thus, we simulate a large data set of synthetic
daily mean discharges by using autoregressive models. Therefore, we first have to detrend
the original time series of Neu Darchau. Then, we have to remove the saisonal cycle and
transform the data in order to get normally distributed residuals (e.g. Maidment, 1993).
Afterwards an AR-model can be fitted to the data. In our case we found an AR2-model
to be the best fit to the data so that the basic equation for the AR2-model is:

Qt = aQt−1 + bQt−2 + εt

Using this AR2-model we can simulate a large number of synthetic time series. Due
to limited computer capacity we simulated 100 synthetic time series. For all synthetic
time series the same analyses as for the original discharge time series is repeated. For
calculating the confidence bands we chose the 90% quantile of the resulting HQ100 time
series. Details of the procedure are shown in Fig. 3 (right).

4 Results

Figure 4 illustrates the results of the quasi non-stationary extreme value analysis for the
six flood indicators POT-0.78, POT-1.23, POT-2.18, AMF, AMFr2, and AMFr3. The
black thick lines represent the time-dependent development of the HQ100 values for each
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Discharge time series Q (daily mean discharge) from 1875 to 2013

GEV 
(block maxima approach)

Loop: For i = 1950 to 2013

Find r-largest maxima for each 
year from 1875 to i (Q1875-i) with 

r = 1, 2, 3

Linear detrending of each data 
sample

Fitting GEV and calculate 
HQ100i for each sample

Store HQ100 values from 
1950 to 2013 for AMF, AMFr2,

 and AMFr3 series

GPD 
(peak-over-threshold approach)

Loop: For i = 1950 to 2013

Linear detrending of each time 
series (Q1875-i)

Defining different (stationary) 
thresholds u1, u2, u3 and find 

all values above u1, u2, u3

Fitting GPD and calculate 
HQ100i for each sample

Store HQ100 values from 
1950 to 2013 for POT-u1, POT-

u2, and POT-u3 series

Program masteranalyses_HQ100.m Program AR_montecarlo_confidenceintervals.m

Discharge time series Q (daily mean discharge) 
from 1875 to 2013

Calculate linear trend from Q
Qa = Q - trend

Calculate saisonality from Qa
Qb = Qa - saisonality

Transform Qb to achieve a normal 
distribution of the residuals 

Qc = log(log(Qb))

Fit an appropriate AR-model to Qc

Simulate j synthetic time series Qc,j  with AR-model

Re-transform Qc,j series to gain Qj

Loop: for i = 1 to j

Execute masteranalyses_HQ100.m for each Qj

Calculate 90%-quantiles (confidence levels) from j 
HQ100 values for GEV and GPD approach

Fig. 3: Analysis process of the quasi non-stationary extreme value method (left) and for
the confidence bands using Monte-Carlo simulations (right).

time span. This means, the first value plotted at the year 1950 is the HQ100 value
resulting from 1875 to 1950. The next value, plotted at 1951, results from the time series
1875 to 1951 and so on. The red lines display the 90% confidence bands calculated by
means of the Monte-Carlo simulations.

Results from analysing the POT-0.78 time series with the GPD show a decreasing devel-
opment of the HQ100 from 1950 to about 2000 and a slight increase until 2013. However,
there is a convergence to the upper confidence band. With respect to the POT-1.23 re-
sults, the general development is comparable, whereas the whole results are approx. 200
m3/s lower. The POT-2.18 results indicate a more or less stationary behaviour until 2010
and a sharp increase until 2013. The GEV analyses (AMF, AMFr2, AMFr3) do show
similar characteristics. From 1950 to about 1980 a decrease can be observed and from
1980 to 2013 an increase is visible. Noteworthy is the sharp increase from 2012 to 2013.

With respect to the extreme events in 2002, 2006, and 2011 it can be stated, that those
events do not lead to extraordinary changes in the HQ100 events. Nevertheless, in the
majority of the flood indicators an increase in the HQ100 levels over the last decades can
be stated. The 2013 event leads to a remarkable jump in the HQ100 events in all flood
indicators. Comparing the absolute values of the HQ100 events one can see that the more
data a flood indicator contain (e.g. POT-0.78 and AMFr3) the higher the HQ100 values
are.
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To answer the question if there are any statistically significant changes in the HQ100
levels the confidence bounds can be used. No HQ100 level exceeds the upper (or lower)
confidence band, thus no statistically significant changes can be stated at the 90%-level.
However, for many flood indicators there is clear tendency towards the upper confidence
band, which might be exceeded if one or more new extreme events will occur.
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Fig. 4: Time-dependent HQ100 levels of discharge (thick black line) at gauge Neu Darchau
from 1950 to 2013 for different flood indicators. The red lines refer to the 90%
confidence bands.

5 Conclusions

The main objective of this paper was to answer the questions, if the discharge charac-
teristics of the Elbe River have changed over the last decades and how much the design
discharges (i.e. HQ100) are affected by the latest extreme events in 2002, 2006, 2011, and
2013.

For the majority of the flood indicators an increase in the HQ100 levels over the last
decades can be stated. The 2013 event leads to a remarkable jump in the HQ100 events
in all flood indicators. No HQ100 level exceeds the upper (or lower) confidence band,
thus no statistically significant changes can be stated at the 90%-level. However, for
many flood indicators there is clear tendency towards the upper confidence bands. The
results obtained within this investigation for the gauge Neu Darchau are not unrestricted
transferable to more upstream located gauges (e.g. Dresden) due to differences in the
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catchment size, runoff concentration time and specific discharge.
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Abstract. The goal of this programmatic paper is to propose a novel method of analyz-
ing the effects and propagation of disturbances in engineering structures in the presence
of spatially distributed random imperfections. The applicative targets are reliability anal-
ysis, damage detection, system identification, and calibration of models in the presence of
randomly perturbed structures in elasticity and strength of materials. The set-up applies
to wave propagation in random media, i.e., materials with stochastically varying prop-
erties. The approach will consist in representing the dynamic response of the structure
by means of stochastic Fourier integral operators. That is, the random variations of the
structural parameters are not modelled directly, but represented by stochastic terms in
an asymptotic approximation to the solution. In this way, the stochastic characteristics
of the response can be explicitly calculated. Having calibrated the stochastic response pa-
rameters to the given data, predictions about the future behavior as well as the underlying
structural parameters can be made. The proposed research is in its initial phase.

1 Introduction

One of the most prominent tasks in engineering fields, such as civil or aerospace engineer-
ing, is the assessment of the reliability of the designed structure. The reliability depends
on the loads, to which the structure will be subjected, and its material and/or geometric
properties. Both kinds of input come with uncertainty, either due to lack of knowledge
about the future usage or through production imperfections or progressing damage.

In civil engineering, modelling the uncertainties by probabilistic methods has become
the standard for more than twenty years. The response of an engineering structure is
generally described by means of an input-output function, often given by a numerical
model. The direct problem consists of determining the stochastic variations of the output,
given randomly perturbed input parameters. The inverse problem consists of determining
the properties of the input parameters, given error prone measurements of the output. A
stochastic structural theory has to be able to address both questions.

Random fields constitute the established mathematical tool to describe random spatial
variations of material or geometric properties of a structure [5]. Applications in elastostat-
ics and reliability are abundant [6, 7, 8]. In the dynamic case, stochastic processes have
been in use for describing driving forces in stochastic structural mechanics. These noise
processes are usually applied to systems whose material properties are deterministic. The
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same applies to the well established methods of damage detection e.g. by Lamb waves,
state space and time series methods, which are used to detect changes in the properties of
otherwise deterministically given structures. However, few methods are available in the
case of dynamically excited structures with random field coefficients. Only in the special
case of randomly layered media, i.e. media which are smooth between randomly placed
interfaces, an elaborate theory is available [2].

Wave propagation and propagation of disturbances in random media with continuously
varying random fields has hardly been addressed so far. The reason for this gap can
be found in the mathematical theory of partial differential equations with random field
coefficients. Indeed, the realizations of the random fields commonly in use in elastostatics
do not have the degree of smoothness required to construct solutions in the propagation
case. This makes it impossible to investigate the stochastic characteristics of the solutions,
which would be required to study the influence on the reliability of the structure, to detect
material parameters, or to model damage on a continuous level. A further obstacle is that
the dependence of the response on the coefficients of a differential equation is generally
nonlinear, even if the equation is linear. Thus the effects of a stochastic perturbation of
otherwise smooth coefficients can hardly be tracked explicitly.

The goal of the research1 presented here is to close this gap and develop and implement
a new method for the description of the time-dependent behavior of structures with ran-
domly perturbed material and geometric properties. We propose to cast the structural
response in the form of a Fourier integral operator and to shift the stochastic modelling
from the coefficients to stochastic building blocks of the Fourier integral operator. A
Fourier integral operator consists of an exponential term containing the phase function
(which describes the propagation geometry) and an amplitude. Applied to initial data, an
approximate solution of the system of partial differential equations describing the wave
propagation is obtained.

The direct approach would start from the equation and a stochastic model of its coeffi-
cients, and consist of computing the phase function and amplitude. In our approach, we
will start from a stochastic model of the phase function and amplitude and model the
stochastic structural response with the aid of the Fourier integral operator. Since neither
the stochastic models of the coefficients nor the ones of the phase function and amplitude
are known a priori, but have to be determined by data fitting, the new approach appears
as justified as the old approach. However, the big advantage of the Fourier integral op-
erator approach is that explicit formulas for the stochastic properties of the response can
be computed, like its autocovariance function, which can then readily be compared with
measurement data.

As the research is in its initial phase, the purpose of this presentation is programmatic –
no concrete results can be given at this stage. In Section 2, the concepts will be elaborated
in more detail. Section 3 contains the description of a simple model from elastodynamics
and should demonstrate why the new methods will aid in solving the stochastic direct and
inverse problems. Section 4 addresses the case of a one-dimensional transport equation,
in which case first explicit results can be demonstrated.

1Project No. 4602529, “Fourier Integral Operators in Stochastic Structural Analysis”, Bridge Program,
The Austrian Research Promotion Agency (FFG), together with INTALES Engineering Solutions,
Natters, Austria, start in October 2014.
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2 The general set-up

To describe the intended methods, consider the equilibrium equations in linear elasticity
theory

ρ
∂2ui
∂t2
−
∑

j,k,l

∂

∂xj
cijkl

∂ul
∂xk

= fi, i = 1, 2, 3

as a typical, simple example or, more generally, hyperbolic systems of the form

∂u

∂t
=

m∑

j=1

Aj(t, x)
∂u

∂xj
+ B(t, x)u + f(t, x), (1)

to be solved for the unknown functions u(t, x) = (u1(t, x), · · · , un(t, x)). Here t denotes
time, x is an m-dimensional space variable, and Aj, B are (n× n)-matrices.

The main concern will be that the coefficients are random functions of their arguments,
i.e., random fields. Random fields are described by means of their autocorrelation function,
which is dictated by the data and the available stochastic models. Indeed, a random field
R is a stochastic process in space. More precisely, it assigns to every point x in space a
random variable R(x). The random field is determined by the finite dimensional, joint
probability distributions of the random variables R(x1), . . . , R(xn) for all choices of finitely
many points x1, . . . , xn. If the random field is Gaussian, it suffices to know the expectation
values E(R(x)) and the covariances COV(R(x), R(y)). If the random field is assumed
stationary and homogeneous, the expectation value is constant, µ ≡ E(R(x)), and the
covariance is given by an autocovariance function Γ(d) = COV(R(x), R(y)) which depends
only on the distance d = |x − y|. Often, parametrized autocovariance functions of the
form Γ(d) = σ2γ(d) are used, with typical autocorrelation functions γ(d) = exp

(
−|d|/τ

)

or γ(d) = exp
(
−d2/τ 2

)
, the field variance σ2 and the correlation length τ as parameters.

It is important to note that Gaussian fields of this type have continuous, but not necessar-
ily differentiable realizations. Existing mathematical theory provides no solution concept
for hyperbolic equations such as (1), if the coefficients are not differentiable up to a certain
higher order.

The starting point for this research is the fact that in the case of deterministic, smooth
coefficients, the solution to equations like (1) can be written as a sum of Fourier integral
operators

u(t, x) =
1

(2π)m

∫∫
e iφ(t,x,y,ξ)a(t, x, y, ξ)u0(y) dydξ (2)

applied to the initial data u0 (possibly up to a smooth error term). The phase function
φ, which carries the propagation geometry of the problem, and the amplitude a can be
computed from the coefficients of the partial differential equation by solving the so-called
eikonal equation and an infinite asymptotic recursion. Apart from the mentioned fact that
smoothness of the coefficients is required for the computation of the amplitude and phase,
it is practically impossible to track the stochastic properties of the coefficients through
these calculations. On the other hand, if the stochastic properties of the amplitude and
phase are known, it is much easier to compute the stochastic properties of the solution
through the representation (2).
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Thus, instead of starting with a stochastic model of the material parameters and com-
puting the stochastic solution, a stochastic asymptotic form of the prospective solution is
proposed which then is fitted to the material properties. The program can be summarized
as follows:

• Start with a stochastic process model of the phase function and the amplitude, more
precisely, a stochastic perturbation of the mean field model. For this, a wealth of
stochastic processes is available.

• Introduce scale and regularization parameters in the stochastic perturbation that
can be adjusted to the concrete application.

• Construct asymptotic solutions to (1) using formula (2) and determine their stochas-
tic properties.

• Fit those solutions to the specific data in the structural engineering application.

• Draw conclusions about the structural model by studying the changes of the pa-
rameters in the fitted asymptotic solutions.

• At this stage, the behavior of the structure can be investigated by usual methods, as
e.g. Monte Carlo simulation using the asymptotic solutions. Further, the underlying
structural and material parameters can be identified. Following changes in the
parameters admits, e.g., damage detection.

3 Indications for longitudinal waves in beams

At this stage, the exemplification of our approach and our target in a simple example will
be helpful. This will be followed by an account of the requirements for the envisaged full
problem. The example concerns longitudinal vibrations of an elastic, semi-infinite beam.
The displacement u(t, x) satisfies the wave equation

ρ(x)∂2t u(t, x)− E∂2xu(t, x) = 0

for x > 0, with the density ρ(x) and the modulus of elasticity E.2 We assume that
driving conditions u(0, t), ∂xu(0, t) have been recorded at the endpoint x = 0 for all times
t. The sound speed is

√
E/ρ(x); for notational convenience, we denote its reciprocal

by c(x) =
√
ρ(x)/E. Separating the propagating directions by v = (∂x − c(x)∂t)u,

w = (∂x + c(x)∂t)u leads to the coupled system of first order equations

(∂x + c(x)∂t + b(x))v = −b(x)w (3)
(∂x − c(x)∂t − b(x))w = b(x)v (4)

with b(x) = c′(x)/2c(x), and data v(0, t) = v0(t), w(0, t) = w0(t) given at x = 0. The
propagation geometry is given by the characteristic curves, which in the general case of
a space and time dependent coefficient c(t, x) are obtained as solutions of the differential
equation

d

dy
α(x, t, y) = c(α(x, t, y), y), α(x, t, x) = t. (5)

2To shorten the notation, we write ∂t =
∂
∂t , ∂

2
t = ∂2

∂t2 etc. for the partial derivatives in the sequel.
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In the special case under consideration, they are simply given by α(x, t, y) = t−
∫ x
y
c(z)dz.

Introducing the phase function φ and the amplitude a – in terms of the language of Fourier
integral operators – by

φ(t, x, ξ) = α(x, t, 0)ξ, a(t, x, y) = exp
(
−
∫ x

y

b(z)dz
)
,

the first component v satisfies the integral equation

v(t, x) =
1

2π

∫ ∞

−∞
e iφ(t,x,ξ)a(t, x, 0)v̂0(ξ)dξ −

∫ x

0

a(t, x, y)b(y)w(α(x, t, y), y)dy, (6)

where v̂0 denotes the Fourier transform of v0, and similarly for the second component w.
The first term in this equation is a classical Fourier integral operator.

Turning to the stochastic case, assume that the deterministic coefficient c(x) is perturbed
by some stochastic component, say of the form c(x) +R(t, x) with a random field R(t, x).
An immediate obstacle arises, namely, the characteristic equation (5) is only solvable if
the realizations of the random field are sufficiently regular, which is typically not the
case. Even if the characteristic equation can be solved, the phase function φ and the
amplitude a are nonlinear functions of the noise term R(t, x) and not known explicitly –
thus the stochastic properties of the Fourier integral operator in the solution formula are
not tractable, in general.

In our approach we plan to circumvent these problems by introducing the noise not
in the coefficient c(x), but rather in the representation of the solution. That is, the
phase function is assumed to be of the form φ(t, x, ξ) + X(t, x, ξ, σ, τ, ε) where φ(t, x, ξ)
is the deterministic part (possibly from the unperturbed deterministic system) and
X(x, t, ξ) = X(t, x, ξ, σ, τ, ε) denotes a family of mean zero stationary stochastic processes
with variance σ2, correlation length τ (possibly vector valued in the non-isotropic case)
and a further parameter ε (which is meant for scaling and/or regularizing the paths of the
process). Similarly, the amplitude may be perturbed in such a way or kept deterministic
in a first order approximation.

In the next step, this stochastic phase function is introduced in the integral equations
for v and w – for the purpose of exposition, the amplitude (and the initial data) is kept
deterministic here. Taking the expectation in Equation (6) leads to terms of the form

E

(∫ ∞

−∞
e i
(
φ(t,x,ξ)+X(t,x,ξ)

)
a(t, x, 0)v̂0(ξ)dξ

)
=

∫ ∞

−∞
e iφ(t,x,ξ)E

(
e iX(t,x,ξ)

)
a(t, x, 0)v̂0(ξ)dξ.

But E
(
e iX(t,x,ξ)

)
is the characteristic function of the noise process, hence known (and

containing parameters σ, τ, ε to be adjusted later). The expectation value of the second
integral in (6) will contain cross correlation terms that might be handled by a perturbation
expansion, say, with respect to the variance σ2 → 0. Noting that the second integral in
(6) can also be rewritten as a Fourier integral operator, the procedure should result in an
integral equation for E(v(t, x)) and E(w(x, t)) or at least an approximate integral identity
for small σ. A similar computation can be evoked to obtain the autocorrelation and the
cross-correlation functions of v(t, x) and w(t, x).
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Details of the procedure have yet to be worked out. Further, for applicative purposes,
handling two and three space dimensions as well as more general systems will be manda-
tory. In the general case, separating the components requires pseudodifferential operators
(one-way wave equations) and the full power of Fourier integral operators [1, 3, 4].

4 Proof of concept: transport equations

In order to further illuminate the intended approach, we detail the example of a scalar
transport equation with random coefficient, which constitutes the simplest type of a hy-
perbolic equation. In this case, the difficulties of a coupled system as in (3) do not arise,
and we are in the position to present a complete solution. The initial value problem for
the general transport equation in m space dimensions with source term is of the form

∂tu+
∑m

j=1 cj(t, x)∂xju = b(t, x)u

u(0, x) = u0(x).
(7)

Rather than discussing the general Fourier integral operator representation, which can
be found in [4], we focus on the simpler, but prototypical one-dimensional case without
source term and propagation speed depending on x only:

∂tu+ c(x)∂xu = 0
u(0, x) = u0(x),

(8)

The characteristic curves are obtained as solutions to

d

ds
β(x, t, s) = c(β(x, t, s)), β(x, t, t) = x.

(Note the interchange of the roles of x in t as compared to (5).) This differential equation
can be readily solved by separation of variables, resulting in

β(x, t, s) = C−1
(
C(x) + s− t

)
with C(y) =

∫
dy

c(y)
.

The solution can be explicitly expressed as

u(t, x) = u0(β(x, t, 0)) = u0
(
C−1

(
C(x)− t

))
.

Again, if we want to compute the expectation value of u(x, t), we would have to know the
law of C−1

(
C(x) − t

)
. This is practically impossible and thus demonstrates one of the

obstacles in the direct approach. As noted earlier, the solution can be written in terms of
a Fourier integral operator

u(t, x) =
1

2π

∫ ∞

−∞
e iφ(t,x,ξ)û0(ξ)dξ

with
φ(t, x, ξ) = β(x, t, 0)ξ.

In this formulation, the law of C−1
(
C(x)− t

)
is still needed. To elaborate our proposed

alternative approach, assume first that c(x) = c0 + εR(t, x), a small random perturbation
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of a constant propagation speed c0. Then β(x, t, 0) = x − c0t + εS(t, x) + O(ε2) where
S(t, x) still has an unknown distribution. As proposed, let us replace εS(t, x) by a random
process X(x, t) = X(t, x, σ, τ, ε) of a certain law with parameters to be fitted by model
calibration. Then the expression for u(t, x) takes the form

u(t, x) ≈ U(t, x) =
1

2π

∫ ∞

−∞
e i (x−c0t)ξe iX(t,x)ξû0(ξ)dξ.

In this form, we achieve control over the stochastic properties of the prospective solutions.
Indeed, ifX(t, x) is a stationary mean zero Gaussian process with variance σ2, we compute
the expectation value of U(t, x) by

E
(
U(t, x)

)
=

1

2π

∫ ∞

−∞
e i (x−c0t)ξE

(
e iX(t,x)ξ

)
û0(ξ)dξ =

1

2π

∫ ∞

−∞
e i (x−c0t)ξe−σ

2ξ2/2û0(ξ)dξ.

Noting that the inverse Fourier transform of a product becomes convolution, it is seen
that E(U(t, x)) is the convolution of the initial data u0(y) with the Gaussian kernel
exp(−y2/2σ2)/

√
2πσ, evaluated at y = x − c0t. Similarly, the second moments of the

response at different points can be computed to

E
(
U(t1, x1)U(t2, x2)

)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e i (x1−c0t1)ξ−i (x2−c0t2)ηE

(
e iX(t1,x1)ξ−iX(t2,x2)η

)
û0(ξ)û0(η)dξdη

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e i (x1−c0t1)ξ+i(x2−c0t2)ηE

(
e iX(t1,x1)ξ+iX(t2,x2)η

)
û0(ξ)û0(η)dξdη.

Here the bar denotes complex conjugation, and we have used the fact that û0(η) = û0(−η).

We observe that X(t1, x1)ξ +X(t2, x2)η is a mean zero Gaussian variable with variance

E
(
(X(t1, x1)ξ +X(t2, x2)η)2

)
= σ2ξ2 + σ2η2 + 2σ2ξηγ

(
d(t1, x1, t2, x2)

)
,

where γ(d) is the autocorrelation function of X(t1, x1) and X(t2, x2), which also depends
on the correlation length τ , and d(t1, x1, t2, x2) is some distance measure between points
(t1, x1) and (t2, x2). Thus

E
(

e iX(t1,x1)ξ+iX(t2,x2)η
)

= e−
1
2

(
σ2ξ2+σ2η2+2σ2ξηγ(d(t1,x1,t2,x2))

)

and it is seen that E
(
U(t1, x1)U(t2, x2)

)
is obtained by convolution of u0(z1)u0(z2) with a

two-dimensional Gaussian kernel with covariance matrix
[

σ2 σ2γ(d(t1, x1, t2, x2))
σ2γ(d(t1, x1, t2, x2)) σ2,

]

evaluated at z1 = x1 − c0t1, z2 = x2 − c0t2, hence explicitly known.

Finally, a sample of measurement data at N points of time and space can be used to
estimate the empirical autocovariance function of the response u(t, x), which in turn can
be used to determine the parameters σ, τ, ε in the stochastic part of the phase function.
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5 Conclusion

In the course of a research project just initiated, the development of a new approach to
modelling partial differential equations for wave propagation with random field coefficients
is proposed. The novelty lies in developing and implementing a stochastic theory of
Fourier integral operators and in placing the stochastic dependence into the phase function
and amplitude, rather than into the material parameters. The research will result in a
new parametric representation of the stochastic solutions and will admit (a) modelling
continuously varying material or geometric properties in imperfect or damaged materials;
(b) determining the influence of stochastic perturbations on the dynamic system response;
(c) performing reliability and sensitivity analysis for a wider class of engineering problems
than currently available; (d) identifying system parameters. The resulting strategy should
provide new paths to damage detection, modal analysis in the presence of stochastic noise,
parameter identification, sensitivity analysis and reliability analysis. Details have yet to
be worked out. This presentation aimed at presenting the concepts and showing the
feasibility of the approach in two simple examples.
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Abstract. Buildings and technical facilities are designed against earthquakes. The cor-
responding design load depends on the local seismic hazard. The latter is described by
the relation between local earthquake impact and its average of the annual exceedance
frequency. This annual exceedance function (AEF) is mostly estimated by a probabilistic
seismic hazard analysis (PSHA) and includes estimation uncertainties (estimation error)
as every estimation does. An attempt is made to quantify these uncertainties by the logic
tree approach in the PSHA. Therein, AEFs are computed for different parameter com-
binations of the sub-models such as magnitude distributions, seismicity in the geo-space
and ground motion relations. The parameters are selected and weighted by experts.

We criticise the logic tree approach from the statistical point of view and introduce an al-
ternative statistical approach for the estimation of the uncertainties in the PSHA. Therein,
we also combine different parameter values for the sub-models. But these are realizations
of the random distributions that model the confidence intervals of the parameter estima-
tions. We demonstrate by numerical experiments that our approach works well. It can
be evaluated scientifically by the tools of mathematical statistics.

1 Introduction

The level of local seismic shaking intensity is estimated for modern building codes and the
earthquake-resistant design of industrial facilities by probabilistic seismic hazard analysis
(PSHA). This is part of seismology and earthquake engineering. The goal of the PSHA
is the estimation of the annual exceedance function (AEF), λ(y, s), for a defined site
s that describes the average exceedance rate (frequency, reciprocal return period) of a
random shaking intensity Y at site s with Y > y for very rare events. There are different
formulations for λ(y, s). Cornell (1968) introduced the first comprehensive PSHA. A large
number of papers about concrete PSHAs and the corresponding methodology have been
published in the last decades (e.g. McGuire, 1993; Bommer and Scherbaum, 2008). A
very general formulation for the AEF is (Raschke, 2014)

λ(y, s) =
∫
t
v(t)

∫
XE

fE(XE, t)
(

1− Fy
(
y;E(Y (s)) = g

(
XE,s,t

)
, V (Y (s)) = g2

(
XE,s,t

)
V (ε)

))
dXEdt (1)

with location vector t of source allocations, parameter vector XE of the quake and event
density v of at point t, the ground motion relation g (GMR; also called the attenuation
function and ground motion prediction equation), the cumulative distribution function
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(CDF) Fy of Y with variance V (.) and expectation E(.). One possible regression model
of the ground motion relation is

Y = εg(X), E(Y ) = g(X), E(ε) = 1, V (Y ) = V (ε)g2(X), (2)

The vector X of the predicting variables include XE of Eq.(1) and the distance d = |s−t|.
The error component is ε and determines the characteristic of Fy in Eq.(1).

There are many different formulations for Eq.(1) and (2). Eq.(1) is often expressed by
a sum of integrals for the different source regions with homogeny seismicity (e.g., [9]).
Moreover, the integration over the geographic space can be replaced by integration over
the source distance and its probability distribution. We prefer Eq.(1) because it is more
oriented to the formulations of random fields (e.g., [8]) and the area-equivalence can be
only discovered and explained by Eq.(1) [12].

All or most parameters of Eq.(1) and (2) are estimated statistically. This results in
estimation errors (standard errors, uncertainties). A large problem in PSHA is the quan-
tification of the estimation error of λ(y, s) respectively of y for a defined value of λ(y, s)
in the sense of a quantile estimation [18] that is caused by the propagated errors. We
discuss the popular logic tree approach for the quantification of the estimation error of the
AEF in the next section. We then introduce a statistical approach for the quantification
of the estimation error and demonstrate the functionality of this approach by numerical
research in section 4. In the final section, we summarize the results.

2 The conventional quantification of the estimation
uncertainty of the PSHA

The estimation error of a PSHA is frequently quantified by the logic tree according to
McGuire (1993). It is now popular and very often used (see, e.g., [2]). Therein, different
variants of model components are considered according to Fig.1. This includes different
single parameters: for example the maximum magnitude mmax, also called the upper
bound magnitude, and different sub models, for example the source regions or the GMR.
A separate weighting w∗,i is applied at each branching of the tree. The sum of the
weightings per branching is 1. At the end, there are a large number of combinations of
variants of the model components. The AEF λj(y, s) is computed for each combination.
The corresponding weighting wj,all is defined in Fig.1. The sum of these final weightings
is again 1. The final estimation for the AEF can be the mean according this weighting
or a kind of pseudo-median or pseudo-quantile. The weightings are frequently derived by
expert opinion. There is an attempt to quantify weightings for the GMR more objectively
with the values from the likelihood function [16], but some important rules of statistical
model selection are not considered sufficiently therein [13]. The logic tree approach is also
considered for and applied to further natural hazards (e.g., [17, 1]).

We reject the logic-tree approach basically because it is not a method conforming to
mathematical statistics. In detail:

• We cannot really compute the standard error and a statistical confidence interval
by the logic tree.
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• We cannot estimate an objective estimation error by subjective weightings.

• It is an unproved doctrine without the possibility of falsification.

• The estimation errors of the single parameters and components such as maximum
magnitude or GMR are not considered in the logic tree although they influence the
exactness of the estimation of the AEF.

The error estimation according to the logic tree approach is not really a quantification
of the estimation error according to mathematical statistics. Nevertheless, the statistical
terms ‘confidence interval’ or ‘median’ are applied. We reject this application of statistical
terms and suggest calling it ‘pseudo-quantile’ or ‘pseudo-median’ to clarify the difference.
The quantification of the logic tree is a sensitivity analysis according to Grünthal and
Wahlström [6]. We support differentiating between the logic tree and actual uncertainty
quantification in the sense of mathematical statistics, but a sensitivity analysis should
quantify explicitly the influence of each parameter. We present a mathematical definition
of sensitivity in the following section. Unfortunately, we cannot suggest a description of
the logic-tree approach according to mathematical statistics as it differs too much from
the rules and methods of mathematical statistics.

We underline that we do not exclude expert opinion from science. The economic develop-
ment of the following year can be estimated by expert opinion. These opinions can then
be validated scientifically by the actual development occurring next year. Falsification is
possible in this situation. But we cannot validate the results of a PSHA with a logic tree
in the same way because we estimate the hazard of local shaking for return periods of
hundreds or thousands of years.

Model component 1:
source region

Model component 2:
seismicity parameter σ

Model component i:
Maximum magnitude 
mmax

Model component n:
GMR

Model A, w1,1=0.4

σ=0.5, w2,1=0.7

σ=0.4, w2,2=0.3

Model B, w1,2=0.6

m =7.5, wmax i,1=0.5

m =7.0, wmax i,2=0.5

Model I, wn,1=0.45

Model II, wn,2=0.65

Final weighting of  
each combination

#
1

2

3
.
.
.
j
.
.
.
.
k

w  wj,all i i,=Π =1 *
n

Σj j,=1 w all=1k

... ...

Figure 1: Scheme of the logic tree.

3 The new approach for the quantification of the
estimation error in the PSHA

There is a useful and popular tool in mathematical statistics that is called the delta
method or delta theorem ([5], chapter 3). It means that the maximum likelihood estima-
tion of φ is φ̂0 = p(Θ̂0) for a statistical model with parameter vector Θ and the scalar
function φ = p(Θ). The value φ is the exceedance frequency in our case and function
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p is the entire PSHA model. The estimation error of φ̂0 , respectively the estimation
variance, can also be derived from the estimation error of Θ̂ by using the Nabla operator
∇. The confidence interval can be constructed by the normal distribution with (see, e.g.,
[3], section 2.6.4)

φ̂0 N(φ0, Vφ) (3a)
Vφ = ∇φTV0∇φ, and (3b)

∇φ =

[
∂φ

∂Θ1

, · · · , ∂φ
∂Θi

, · · · , ∂φ
∂Θk

]T
. (3c)

The number of elements in Θ is k. The sensitivity of φ̂0 in relation to a parameter Θi is
obviously determined by Eq.(3c). This is also our mathematical definition of sensitivity.

We cannot directly apply the delta method for the PSHA as the numerical burden would
be very large if we computed the confidence range of y in λ(y, s). Moreover, a PSHA can
include a large number of parameters. Last but not least, not every parameter estimation
is normally distributed. The estimation of the maximum magnitude can be exponentially
distributed [11] in the case of the truncated exponential distribution. Nevertheless, we
can apply the principal idea of the delta method according to the procedure of Fig.2. We
estimate in the first step the parameters of the PSHA model, including the estimation
errors and the dependencies between the estimated parameters. We then point estimate
the AEF in step 2. In addition, we generate realisation for the parameters by Monte Carlo
simulations according to the distribution of the estimation errors of step 1. The AEF is
computed for each realization of the parameter vector in step 4. In the last step, the error
propagation from step 1 to step 2 can be computed by analysing the set of AEFs from step
5. Their variances are equal to the error variances (square of the standard error/standard
deviation) of the AEF of step 2. The accurateness of the procedure depends on the
number of simulations in step 3.

We demonstrate the functionality of the approach by a simple, fictive example in the
following section. The numerical research is also the possibility for the falsification of our
approach.

1. Estimation of the vector 
of modell parameters and
their estimation errors 

3. Monte Carlo simulation 
of a set of parameter
vectors

4. Computation a set of 
AEFs for the set of 
simulated vector

5. Quantification of the
uncertainty of  step 2. by 
the variance of 4.

2. 
with the point estimated
parameter vector

Computation of the AEF

Figure 2: Scheme of a PSHA with computation of the estimation error.

4 A numerical example

We construct the reality for our example and define its ‘actual’ parameters. The consid-
ered site is in a source region with uniform seismicity according to Fig.2a. The average
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numbers of earthquakes in this region is η for random magnitudesM ≥ 4 and corresponds
to v(t) in Eq.(1) with

η = 3002v(t) (4)

The magnitude distribution is modelled by the truncated exponential distribution [4] and
is shown in Fig.2b. It has a maximum magnitude mmax = 7 in our example. The CDF is

F (m) =
1− exp(−(m−mmin)/σ)

1− exp(−(m−mmax)/σ)
(5)

The ‘actual’ circular GMR g(X) of the point sources is formulated with for the peak
ground acceleration (PGA, [cm/s2]; d and h [km]) and normally distributed residuals ξ

ln(Y ) = g∗(X) + ξ, E(ln(Y )) = g∗(X), V (ln(Y )) = V (ξ), E(ξ) = 0 (6a)

g∗(X) = Θ0 + Θ1m+ Θ2 ln
(√

d2 + h2
)

+ Θ3

√
d2 + h2, X = (h, d,m) (6a)

g(Y ) = E(Y ) = exp
(
g∗(X) + V (ξ)/2

)
(6a)

The GMR is pictured in Fig.3c. The random hypocentre depth H is log-normally dis-
tributed. We list the relevant information about the parameters such as their actual
values, their samples and references for their inference in Tab.1.

Para-meter Actual value Description Equation Estimation method and error
distribution (confidence range) Sample (size n)

σ 0.4348 magnitude
distribution 5 simplified according to exponential

distribution [7] n=40

mmax 7 maximum
magnitude 5 [10, 11] Maximum of 600 years

η 1

average annual
number of
earthquake M ≥ 4
in the region

4 parameter estimation for the Poisson
distribution [15]

Observed number
M ≥ 4 of 100 years

Θ0 4.7 GMR 6 [14] n=300
Θ1 0.6 GMR 6 [14] n=300
Θ2 -1.1 GMR 6 [14] n=300
Θ3 -5 GMR 6 [14] n=300

V (ξ) 0.25 GMR, residual
variance 6 [14] n=300

E(H) 10 Expectation of
hypocentre depth - [7, 15] n=300

V (H) 36 Variance of
hypocentre depth - [7, 15] n=300

Table 1: Parameters, the actual values of the example, sample sizes and estimation

We simulate 1000 samples for our constructed reality and estimate the parameters accord-
ing to step 1 in Fig.2. We then compute the AEF with the point estimations according
to step 2. Therein, we define the values of λ(y, s) and compute the corresponding value
of y.

Furthermore, we generate parameters by Monte Carlo simulations (step 3) and compute
the corresponding AEFs (step 4). We do these 20 times for each of the 1000 samples of
the ‘real world’ and estimate the estimation variance each time. We can now evaluate the
suggested procedure by a comparison between the variance of a 1000 AEF of the point
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Figure 3: Constructed example: 3a) analysed site and source region, 3b) magnitude dis-
tribution, 3c) GMR (h=10km, m=6).

estimations (step 2) and the average of all estimated error variances for step 5. We show
this comparison in Fig. 3a. There is a very good accordance for exceedance frequencies
smaller than 1/1000. The average of the estimated error variances is a bit larger for
larger exceedance frequencies. This could be caused by the decreasing exactness of our
computation for decreasing exceedance frequency. We apply a Monte Carlo simulation
similar to the stochastic integral to compute the AEF.

We also compare the ‘actual’ AEF with the average of the point estimations (step 2) and
the average of the averages of the AEFs of step 4 in Fig. 3b. There are differences for
exceedance frequencies larger than 1/1000.

The construction of confidence ranges is not investigated in detail. But we have briefly
researched the distribution of the estimated values of y for λ(y, s) = 1/1000. The result
is depicted in Fig.2c. The confidence ranges obviously should be constructed with a
log-normal distribution rather than with a normal distribution.
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Figure 4: Results of the PSHA for the example in Fig.3 a) AEF, b) variance of the estima-
tion errors of y for defined exceedance frequencies (green line – variance of the
point estimations of step 2, red line – average of the 1000 estimated variances
of step 5), c) distribution of estimated y for λ(y, s) = 1/1000.
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5 Conclusions

We have criticised the logic-tree approach for the quantification of the uncertainty of the
PSHA and have suggested a new approach for the quantification of the estimation error
that is strongly oriented to the delta method from mathematical statistics. We have
shown by the numerical example that our approach works. It also could be falsified if it is
not correct. In this way, it fulfils a principal scientific standard. This cannot be claimed
for the logic-tree approach.

We suggest further research in this field to verify and improve our approach and to extend
it. The correct construction of the confidence interval should be the goal of future research.
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Abstract. Performing experiments on and monitoring of civil engineering structures
has become more common in recent years for state determination of both aging and
newly built modern structures. Before conducting experiments it is always useful to
determine the best achievable sensor positions by optimal design of experiments. In this
case, model-based design procedures, driven by numerical simulations, are used to find the
optimal sensor locations even before the construction of a building. Through the use of a
finite element model, measurement results are created artificially by adding two different
types of errors: random errors and systematic errors. In order to determine the optimal
design, two different methods are used: one based on the Fisher Information Matrix by
applying the D-optimality criterion and the other one by reducing the mean-squared error
between the true and the estimated solution. A tower-like structure, modeled as a one
dimensional cantilever column and discretized using standard beam elements, serves as an
application example to compare the presented methods. The results highlight advantages
and disadvantages for each method as well as the ability to include different types of errors
for the determination of sensor positions.

1 Introduction

To understand processes which happen in reality it is always useful to conduct experiments
and take measurements. Preliminary investigations concerning the measurement to be
taken are requiered in order to make the experiments as efficient as possible. The basics
in Design of Experiments go back to the 1920’s “where statistically based methods of
experimentation based on the factorial designs” [7] were invented. Since that time a
lot of improvements concerning finding the optimal design of experiments were made,
but mainly not applied to civil engineering problems. A short review about developed
methods is given in the following paragraph.

The Fisher Information Matrix (FIM) M goes back to Ronald Fisher who defined the
inverse of M as the lower boundary of the covariance matrix of the parameters [1]. M
is computed by the sensitivities of the forward operator of the problem and an optimal
design can be found by the use of any optimality criterion which can be found in literature,
e.g. [1, 9]. Uciński uses in [9] a Fisher Information Matrix M(s) which depends on the
sensor positions s.
While in the publications of Haber, Tenorio and Horesh a bias for ill-posed problems
exists, the optimal design is found by minimizing the mean squared error, MSE, [5]. A
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similar approach is used by Bardow [2] where the “expected total error, ETE” which is
the difference “between the Tikhonov estimate and the true function” is being minimized.
This leads to a trade-off between the bias and the variance regarding the expected error.
In [2] also a comparison between his approach and the E-optimality criterion used on the
FIM is given. The outcome of Haber et. al. [5] is included in the research of Lahmer [6]
which also uses the minimization of the MSE. In his work he also uses the FIM to minimize
the variances of the parameters by comparing different criteria for optimal design.

For the approach by using the FIM it is missing that systematic errors can not be taken
into account. It can only deal with random errors which in most cases follow a normal
distribution with zero mean and a constant standard deviation. One step further can be
taken by minimizing the MSE, because in this case the error consists of one term for the
bias and one for the variance.
This work dedicates itself to the comparison of both approaches while it is considering
the optimal sensor positioning on a tower-like structure related to civil engineering as the
test example where both methods are going to be verified.

2 Model based design of experiments

Numerical modeling and simulation of structures can be approached in a number of differ-
ent ways with the inclusion of many sub or partial models. The selection of the appropriate
model or models and corresponding complexity must be undertaken by the design or in-
spection engineer subject to experience or strategic procedures, e.g. see [8]. Experiments
and monitoring of structures bridges the gap between physically measured reality and
numerical simulations. Generally the design of experiments is necessary to reduce the
uncertainties and errors which are obtained by conducting any experiment. Finally the
selection of sensor types, their positioning and sampling rate should be optimized by a
method for DoE and updated by a numerical model of the examined structure.

2.1 Types of errors

The two types of errors considered are systematic and random, which are both inherent
in measurement data originating from various sources. As described in [3], the total error
in measurement data can be written as:

δi = βi + εi (1)

where β represents the systematic or bias error, and ε represents the random error. The
error terms are given by a value relative to δi for βi and εi = N (0, σ2), a normally dis-
tributed random variable with zero mean and variance σ2. For example, the systematic
error could come from a poor calibration or too strong of an abstraction during the model
building process, while the random error can have a number of sources including phenom-
ena such as cable noise observed in wired monitoring systems. A fictitious measurement
time history u is created by adding the total error to the model response y:

u(x, ti) = y(x, ti) + δi (2)

where x and t correspond to the spatial and temporal domains respectively.
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2.2 Optimal sensor positions using Fisher Information Matrix

As described in Uciński [9], the Fisher Information Matrix, FIM, can be derived using the
Cramér-Rao inequality as a lower bound estimate of the covariance matrix of parameters.
This leads to a probabilistic definition of optimal sensor placement. Most simulations of
civil engineering structures use deterministic models and methods, therefore this origi-
nal form of the FIM cannot be used directly for the design of experiments. In order to
relate numerical model responses and parameters to measurement on structures, certain
assumptions are necessary. A basic assumption is that the numerical model sufficiently
represents the considered structure. The most common approach is to consider the nu-
merical model response as a measured response by the addition of noise. When this noise
is taken as a random variable with a probability distribution, then a relation between
the probabilities and model responses can be made. Considering this along with spatially
uncorrelated errors [9], the FIM becomes

M =
1

σ2

nsens∑

j=1

∫ tf

0

(
∂y(θ, xj, t)

∂θ

)T(
∂y(θ, xj, t)

∂θ

)
dt (3)

where y solves the forward problem, θ are the parameters of interest, x is the spatial
variable and t is the temporal one, the measurements are taken over a finite time interval,
tf . The standard deviation of the measurement error is σ, constant for all measurement
locations.

From this brief overview, it becomes immediately clear that only random errors can be
considered directly with the FIM, a potential disadvantage when systematic errors are
large. Different criteria exist for evaluating and comparing FIMs, which also may return
different results as to which sensor configuration is optimal. As described in [9], optimal
sensor positioning should minimize some real-valued function, J . One example is the
D-optimality criterion:

J(M) = det(M−1). (4)

While many other criteria exist and there is still some debate about which one is the best
to use, an advantage of the D-optimality condition is that it is independent of the scaling
of the parameters (units) [4]. This criterion will be used in this discussion for these and
other reasons. This choice is immaterial as long as it is consistent when the comparison
is made between measurement setups.

2.3 Optimal sensor positions using mean-squared errors

This second method is using the minimization of the difference between the “exact” so-
lution for the parameters θ and its estimate θ̂. Therefore first the form of the data has
to be defined, assuming a linear relation between model input and output. In this case
the data u consists of the “exact” solution y and an error term δ which is described by
equation 2, where δ = β + ε can describe both, either a systematic (β) or a random (ε)
error as explained in 2.1. As we do not know the true structure of the systematic error
β, it is here considered as a relative error to the “exact” value and ε represents a normal
distribution with zero mean and known variances σ2. The question is now how to setup
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an experiment that leads to the best approximation of the unknown vector of parameters
θ. Firstly, a sufficient number of experiments has to be chosen. In the well-posed case,
with which we are dealing in this article, the number of experiments or in this case sensors
nsens has to hold the inequality nsens ≥ n. [5]
Coming back to the optimization problem a cost function has to be set up. This leads to
the usage of the mean-squared error (MSE) which is expressed by

MSE(θ̂) = E‖θ̂ − θ‖2 (5)

and which should be minimized by

minE‖θ̂ − θ‖2 (6)

as written in [2] to find the optimal experimental design.
After the number of sensors is defined, the optimal postions have to be found. The method
which is used in this paper deals only with artificial measurements, which means that two
different types of noise are added to the “real” measurement which is not corrupted by
any kind of noise and is gained by solving a finite element approach.
This way we take a model response y and add a random error on the one hand and a
systematic error on the other hand to get the measured data u. This leads to the noise
corrupted terms

urand(θ, xj, ti) = y(θ, xj, ti) + ε and (7)
usys(θ, xj, ti) = y(θ, xj, ti) + β respectively, (8)

which depend on the parameters θ, the sensor postions xj and the time ti. The corre-
sponding cost functions that depend on the parameters θ and which should be minimized
are expressed by

min
θ
J rand(θ, xj, ti) = min

θ

nsens∑

j=1

(
y(θ, xj, ti)− urand(θ, xj, ti)

)2
and (9)

min
θ
J sys(θ, xj, ti) = min

θ

nsens∑

j=1

(
y(θ, xj, ti)− usys(θ, xj, ti)

)2
. (10)

After a certain number of iteration steps the gained parameters serve as the estimated
ones θ̂ and lead to the mean-squared error given by

MSE(θ̂, xj) = ‖θ̂(xj)− θ(xj)‖2. (11)

The value of the MSE is then used as the selection criteria for finding the best sensor
positions. This means that the best sensor positions xj are, where the mean-squared
error is minimal.

3 Application on a tower-like structure

3.1 Numerical model

In order to compare the results from applying the two different design of experiment
strategies introduced, a tower-like structure is considered as depicted in Figure 1. The
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tower is separated into three equal length sections each corresponding to a different ma-
terial with Young’s modulus, Ei. Although three materials are modeled, the density is
kept constant at 2550 kg/m3. A finite element model using nine Bernoulli beam elements
of equal length (3 per material) is used to model the structure. Modal damping is kept
at 5% for all modes in the discretized system. A dynamic simulation is computed using
an initial displacement followed by a free vibration response. Design of the input loading
for optimal experiments is outside the scope of this paper.
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where und(✓, xi, ti), usys(✓, xi, ti) 2 u(✓, xi, ti) which depend on the sensor postions xi and
the time ti. The corresponding cost function that is depending on the parameters ✓ and
which should be minimized is expressed by

min J(✓, xi, ti) = min
nmeasX

i=1

(y(✓, xi, ti)� u(✓, xi, ti))
2 . (11)

After a certain number of iteration steps the gained parameters serve as the estimated
ones ✓̂ and lead to the mean-squared error given by

MSE(✓̂, xi) = k✓̂(xi)� ✓(xi)k2. (12)

The value of the MSE is then used as the selection criteria for finding the best sensor
positions. This means that the best sensor positions x are, where the mean-squared error
is minimal.

3 Application on a tower-like structure

In order to compare the results from applying the two different design of experiment
strategies introduced, a tower-like structure is considered as depicted in Figure 1. The
tower is separated into three equal length sections each corresponding to a different ma-
terial with Young’s modulus, Ei. Although three materials are modeled, the density is
kept constant at 2550 kg/m3. A finite element model using nine Bernoulli beam elements
of equal length (3 per material) is used to model the structure. Modal damping is kept at
5% for all modes in the discretized system. A dynamic simulation is computed using an
initial displacement followed by a free vibration response. Design of the input loading for
optimal experiments is outside the scope of this paper. Acceleration time histories taken
at specific locations is considered as the measurement data.

` 200 m
do 6 m
tw 0.15 m
E1 4.45 · 1010 N/m2

E2 2.10 · 1011 N/m2

E3 3.00 · 1010 N/m2

Figure 1: System

As we are dealing with the model response on discrete positions xi, the optimal sensor
postions are found by evaluating all combinations of three sensors nsens at nine possible
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` 200 m
do 6 m
tw 0.15 m
E1 4.45 · 1010 N/m2

E2 2.10 · 1011 N/m2

E3 3.00 · 1010 N/m2

Figure 1: Sketch of the cantilever beam with discrete sensor positions, cross section A-A
and values of the material properties

Acceleration time histories taken at specific locations xj and corrupted by the afore men-
tioned two types of noise are considered as the measurement data. The random error
is hereby represented by a normal distribution εi = N (0, σ2) with zero mean and the
standard deviation σ = 0.005. For the systematic error a relative description is used, so
the systematic error is 5% of the exact value of the acceleration time history.

As we are dealing with the model response on discrete positions xj, the optimal sensor
postions are found by evaluating all combinations of three sensors nsens at nine possible
positions npos. Applying the combinatorial equation

npos!

nsens! (npos − nsens)!
, (12)

we get 84 combinations which have to be calculated. Their values of the D-optimality
criterion and respectively the mean-squared error are serving for sorting the sensor setups
in order to gain the best one.

3.2 Results: Comparison between FIM and MSE

The comparison of the results of both methods are shown in the tables 1 and 2. Where
there is depicted the best, second best and worst value for the D-optimality criterion of
the Fisher Information Matrix, FIM, on one side and the values of the mean-squared
error, MSE, corresponding to this particular design of sensors on the other side and the
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rows below vice versa. In table 1 the comparison for the random error and in table 2 the
one for the systematic one is given.

Table 1: Random error: Overview of normalized values of D-optimality criterion of FIM
and MSE (Opt. Crit.) for the two best and the worst design corresponding to
each method and their values for the other method respectively

FIM MSE
Design Opt. Crit. Rank Opt. Crit. Rank

[ 5 8 9 ] 0.010 1 0.527 30
[ 4 8 9 ] 0.010 2 0.384 4
[ 1 2 3 ] 1.000 84 0.494 18

[ 2 5 7 ] 0.153 44 0.202 1
[ 2 5 8 ] 0.120 36 0.332 2
[ 4 6 7 ] 0.129 41 1.000 84

Table 2: Systematic error: Overview of normalized values of D-optimality criterion of
FIM and MSE (Opt. Crit.) for the two best and the worst design corresponding
to each method and their values for the other method respectively

FIM MSE
Design Opt. Crit. Rank Opt. Crit. Rank

[ 5 8 9 ] 0.010 1 0.545 58
[ 4 8 9 ] 0.010 2 0.545 57
[ 1 2 3 ] 1.000 84 0.777 83

[ 1 2 9 ] 0.097 30 0.520 1
[ 1 3 9 ] 0.343 76 0.520 2
[ 1 2 4 ] 0.162 51 1.000 84

4 Discussion and conclusions

The comparison showed that the FIM and MSE optimal placement methods give differ-
ent results. For the FIM, the ranks and normalized values of the possible designs are
independent of the two types of errors considered. However, the MSE showed that the
differences in the considered errors can be accounted for resulting in alternative optimal
designs. When comparing the same designs between the two methods, the corresponding
ranks and normalized values are scattered; no relation can be observed between the best
of one method when computed by the other. The relative normalized values are also in
different proximities of the best designs.

While these differences can be observed, this information is not sufficient to say one
method is better than the other. The MSE method is a far more computational intensive
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procedure since the model must be computed for each iteration of an updating optimiza-
tion for every set of sensor positions. On the other hand, the FIM only requires that the
model be computed a few times (twice the number of parameters) in order to approx-
imate the partial derivatives. From the theoretical background, it is apparent that the
FIM method is limited to random errors whereas the MSE method can take into account
both random and systematic errors, which can be seen in the results, because the sys-
tematic error does not effect the optimal sensor positions when using the FIM. Since the
type and amount of error actually results in different designs, an accurate description of
the error in measurement system is necessary. In addition, a compatible measure for the
quality of the measurement setup is necessary due to the fact that optimality criteria are
different. Both of these aspects as well as the investigation of the influence of the number
of iterations for MSE and the introduction of the sigma-point method will be the subject
of further work.
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Abstract. The paper shows an approach for the coupling of mathematical and physical
models in the abstraction process of structural engineering models. Based on the uncer-
tainty quantification in both types of models, weighting factors for the model combination
are determined. The more certain a model is, the more it is taken into account in the
coupled model. So the coupling approach gives the possibility to verify the accuracy of
the used models and to adjust the coupled model to be more precise in predicting physical
reality. By usage of the academic example of a cantilever beam, the applicability of the
approach is demonstrated.

Keywords: model abstraction, model uncertainties, model coupling

1 Introduction

In the field of structural engineering, the subject of model quality evaluation and model
error estimation has become more and more important [1], [11], [14] during the past
decade. This is mainly due to the fact that, objects in structural engineering are mostly
unique structures. The design process is done only by usage of mathematical abstraction
models. Hence, the uncertainty in these models must be reduced to a minimum to make
sure that the design criteria given by currently relevant codes, e.g. Eurocode 3 [5], can
be maintained without safety concerns. Since current structural systems become more
and more complex and challenging, the design only based on mathematical models is
sometimes not possible. Experimental investigations will be necessary to determine the
physical behavior of materials or structural parts and couple them with numerical calcu-
lations [15]. The goal of structural engineering, to achieve a certain reliability and safety,
is still in the focus of all investigations and current research.
In accordance to Figure 1, models can be basically separated in two types, mathematical
and physical models. They are part of the abstraction process of a considered system.
On one side, the mathematical models can consist of numerical or analytical descriptions
[17] and will be used in virtual simulations. On the other side, physical models consist
of real structural parts, which are physically present. Thereby, physical models may be
divided into two subgroups: experiments and monitoring. Experiments are characterized
by the definition of boundary conditions, loading, model abstraction and model scaling
by the user. In monitoring, measurements were done on real structures with respect to
true system input scenarios and the related system responses. For this, the system will
not be changed in the characteristics and no structural restrictions occur. In contrast to
the system under consideration, the monitoring is also still a model, since only a limited
number of model input and output variables can be determined during the measurement
process. But, this model is based on the real system under consideration.
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Figure 1: Flowchart of model abstraction and coupling process

To achieve a high quality of mathematical structural design models, there are several
approaches for the quality evaluation process available. Most commonly, they are based
on the validation to real measurements, which can be done with different methods. The
method of model validation [12] or the model assessment by usage of Bayesian theories
[2], [7] are the most famous. Since the main content of this paper refers to the coupling
of mathematical and physical models, the available measured data in this case can not
be used for the evaluation process of the mathematical model. The measurements are
required for the coupling process only. Therefore, an evaluation process purely based on
mathematical model data has to be used. Different approaches are available in common
literature [8], [11], [14].

The quality of a coupled mathematical-physical model strongly depends on the quality
of its parts, i.e. the quality assessment of mathematical and physical model has to be
performed separately based on the uncertainty calculation for both models. This means
that, for the mathematical model the total uncertainty, consisting of model and parameter
uncertainty, has to be minimized (see Figure 2). Therefore, the model complexity is the
important factor. The more complex a model is, the more phenomena will be considered
and this reduces the model uncertainty. In return, however, the number of parameters and
thus the parameter uncertainty will be increased. So, there must be a balance between
model and parameter uncertainty to find the point for lowest total uncertainty. Limita-
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tions in the optimal model combination come from the model robustness also, which takes
the usability of the model into account. Robustness therefor is specified as a restriction
of the deviations in the output data, which is often necessary in the estimation of highly
nonlinear phenomenas. Depending on the range of the important parameters, there are
often limitations in the model applicability. These may lead to high scattering in the
model responses, which can not be explained by the input variations.
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Figure 2: Relationship between model complexity, uncertainty and robustness

A measurement or observed data can unknowingly be very close to the unknown value of
the measurand, thus having a negligible error; however, it may have a large uncertainty.
Since the exact value of a measurand can never be evaluated, error is an abstract con-
cept, which can never be quantified. However, uncertainty is a measure that can be and
should be quantified for every measurement. For this reason, in this study, measurement
uncertainty associated with the characterization of material parameters and deflection of
beam can be calculated in accordance with GUM [3], a classical approach and GUMS1
[4], Bayesian paradigm.

Some approaches for the combination and coupling of mathematical and physical mod-
els are available in literature. One is the hybrid procedure from Laermann [9]. But,
currently no approach considering mathematical and physical model uncertainty in the
coupling process is presented. Thus, in this paper, a methodology for the quantitative
assessment of the quality of the results of measurements and mathematical models as well
as developed method of hybrid coupled physical-numerical model are presented. Basis
is the academic example of a cantilever beam under vertical loading. For simplification,
the experimental investigations will be done virtually. By usage of the exact analytical
solution, the determination of real model responses is possible with a minimum of effort.

2 Uncertainty based model coupling

The following approach for the assessment of model coupling is based on the uncertainty
quantification in the output parameters of the mathematical and physical models. The
polynomial regression analysis [10] as a fundamental response surface method for the
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output data is basic for the determination of the uncertainties. So, the output data
uncertainties can be determined by the variation of the model responses which are given
by:

εM(Y ) = |m̃(Y )− µM(Y )| εP (Y ) = |p̃(Y )− µp(Y )|, (1)

where m̃(Y ) and p̃(Y ) are responses of the mathematical and physical models, µM(Y )
and µp(Y ) are corresponding results of the polynomial response surfaces. For the cou-
pling process, all sources of uncertainties have to be taken into account, so the model
evaluation processes for the mathematical and physical models are fundamental. Accord-
ing to equation (1), the so called total difference between the response surfaces of the
mathematical and physical model is introduced as follows:

εT (Y ) = |µM(Y )− µP (Y )|, (2)

which estimates the deviation in the mean values of mathematical and physical model
response. To use the given models for the coupling approach, there must be a so called
model conformity. That means, the models must be able to match the other model answer,
at least partially. This can be determined by usage of the model uncertainties and the
total difference between the models as follows:

εT (Y ) ≤ εM(Y ) + εP (Y ), εT (Y ) > εM(Y ) + εP (Y ). (3)
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Figure 3: Model uncertainties and related model conformity

If the used models have partial model conformity, then there is still a space of coincidence
in the model results. The coupling approach has the objective, that the most suitable
accurate model answer of the considered system can be described by mathematical and
physical model and is therefore located inside of the overlapping model answer space. By
usage of the determined model uncertainties, the coupling of the models will be based on
weighting factors:

δn = 1− εn∑N
n=1 εn

, (4)
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where n is the number of the model and N is the amount of all models which will be used
for the coupling process. At least two models (one mathematical and one physical model)
are required. For multiple mathematical or physical models, the coupling process is also
valid. Related to the weighting factors, the response of the new coupled model function
can be determined by:

µc =

∑N
n=1 δn ∗ µn

N
. (5)

Through regression analysis, this response can be determined by a polynomial equation,
which describes the coupled model response. By parameter optimization, the mathemat-
ical model can be used for the determination of the specific model input parameters to
represent this response. Thus, the mathematical model considering the fixed input pa-
rameters is able to be used for further investigations on the structural behavior of the
considered system.

3 Application - Cantilever beam

3.1 System

For the application of the shown model coupling approach, the example of a cantilever
beam is used. The system consists of a rectangular hollow cross section 120x120x10 mm
with a length of 1.5 m. The material of the beam is steel S355 according to [5]. Thereby
the considered system is similar to practical applications in structural steel engineering.
The cantilever beam is loaded by a load of 25 kN distributed over a small area near the
end point. By the given dimensions and loading, the considered system reacts in the
range of elastic system capacity. So the deviation in the output data is limited. By
nonlinear system capacity, the mathematical model output will become high deviations,
which leads to model robustness problems. Thereby the deviations in the output data
increase significantly by an increase of the load. The fluctuations in the output data
can not be described by the variations of the input data anymore. By the definition of
a rectangular hollow cross section the phenomenon of structural failure in a sway mode
can be neglected, only vertical displacement occurs and will be considered as objective
function in the coupling approach. By loading up to plastic deformations,

For simplification, the experimental investigations will be done virtually, by usage of an
analytical solution. Unknown scattering in the responses, as usual in measurements, is
generated by fluctuations in the implemented load over time.

3.2 Mathematical model

Related to the considered system, the mathematical model abstraction will be done by a
parametrized numerical model, consisting of quadratic 3-node beam elements. According
to the fact that all material and system parameters in real objects are scattering values,
the numerical simulations are performed by usage of normal distributed input parameters
according to current literature [13], which are shown in Table 1.
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Table 1: Scattering input parameters for numerical model
Parameter Mean COV
Young’s modulus [GPa] 210 0.03
profile height [m] 0.12 0.01
profile width [m] 0.12 0.01
profile thickness [m] 0.01 0.02
Density [kg/m3] 7850 -

The application of model quality analysis for the available numerical models has been
shown, that the influences of the different partial models on the objective function of
vertical displacement can be neglected. For the given loading in the range of elastic
material capacity, geometrical and physical linear, as well as nonlinear models will predict
the same model response. So, the model uncertainty related to the abstraction process can
be determined as zero, the only uncertainty in the mathematical model responses is caused
by the scattering model input parameters and is directly related to the scattering in the
model output parameters. That means, the less complex models lead to less parameter
uncertainty and thus to less total uncertainty. For consideration of the scattering in
the model input parameters, 500 samples were generated by advanced Latin Hypercube
Sampling [6], in order to achieve a good parameter distribution. Calculations were done
over the full time range with maximum time steps of 0.1 [s], to get impressions of the
influences of the scattering on the model output.

3.3 Physical model

To illustrate the proposed strategy for the model coupling, a virtual physical model for
a cantilever beam is considered. The idea behind this model is to use the analytical
solution for a cantilever beam for the considered loading case, and simulate by this an-
alytical solution results of an experiment. Displacements u(x, t) of points of the beam
can be described in framework of the Bernoulli-Euler beam theory by the following non-
homogeneous partial differential equation:

ρA
∂2u

∂t2
+ E I

∂4u

∂x4
= f(x, t), x ∈ (0, L), (6)

where A is the area of a cross-section, ρ is the density, E is the Young’s modulus, I is
the moment of inertia. All calculations will be performed with the following set of the
parameters:

L = 1.5 m, ρ = 7850 kg/m3,
A = 4.25 · 10−3 m2, I = 8.43 · 10−7 m4,
E = 210 GPa.

(7)

The boundary conditions for the cantilever beam are given by:

u |
x=0

= 0,
∂2u

∂x2
|

x=L

= 0,

∂u
∂x
|

x=0

= 0,
∂3u

∂x3
|

x=L

= 0.

(8)

292



12th International Probabilistic Workshop

The problem will be solved with the homogeneous initial conditions:

u |
t=0

= 0,
∂u

∂t
|

t=0

= 0. (9)

The excitation force f(x, t) in (6) has the following form:

f(x, t) = h1(x)h2(t), (10)

where:

h1(x) =





0, for x < L1,

− 25

L2 − L1

kN/m, for L1 ≤ x ≤ L2,

0, for L2 < x < L,

(11)

for 0 < L1 < L2 < L, and:

h2(t) =

{
t+ 1

10
sin(150 t), for 0 < t < 1,

1 + 1
10
sin(150 t), for 1 ≤ t <∞,

(12)

where the function h2(t) contains terms representing a “noise” which is always present in
real measurements.

The initial boundary value problem (6)-(10) will be solved by the method of separation of
variables. Only some important steps of this method will be mentioned here, the details of
the method can be found in [16]. The solution of the beam equation (6) can be represented
in the form of the Fourier series as follows:

u(x, t) =
∞∑

n=1

Xn(x)an(t), (13)

where Xn(x) are eigenfunctions of the differential equation, and an(t) are modal coeffi-
cients. Taking into account the boundary conditions (8), the initial conditions (9) and
the excitation force (10), the displacements u(x, t) of points of the beam can be described
as follows:

u(x, t) =
∞∑

n=1

Xn(x)

ωn ρA




L∫

0

h1(x)Xn(x)dx






t∫

0

h2(τ) sin [ωn (t− τ)] dτ


 . (14)

3.4 Model responses and coupling

In Figure 4 the model responses of both models, numerical and physical, are shown. For
the numerical model the scattering model responses are plotted representative at nine
time steps. This gives a better overview on both model results.

It can be observed that, with increasing load, the influences of the scattering in the
model input parameters on the numerical model results are also increasing. The physical
model shows a more constant scattering in the results. Under full load, the scattering is
increased by changes in the loading, which is with respect to real measurements. By use
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of polynomial regression, the corresponding response surfaces for the considered models
can be determined by:

µ(X) =
n+1∑

i=1

aix
n+1−i, (15)

which are also shown in Figure 4. These response surfaces describe the mean values of
the considered models over time and will be used for the next steps of the uncertainty
estimation. In accordance to the described coupling approach, the basic model uncer-
tainties are calculated as follows:

εM(Y ) =
T∑

i=0

|m̃(Yi)− µM(Yi)| = ±2, 2[mm], (16)

εP (Y ) =
T∑

i=0

|p̃(Yi)− µp(Yi)| = ±3, 8[mm], (17)

It shows that, the scattering in the physical model response is much higher than the
scattering in the mathematical model response. In order to check the applicability of the
coupling approach, the total difference between the models will be used:

εT (Y ) =
T∑

i=0

|µM(Yi)− µP (Yi)| = 1, 25[mm]. (18)

With a smaller total difference than the mathematical and physical model uncertainty, the
models have at least partial model conformity. The model output ranges are overlapping
each other, which means both models are able to represent the system behavior in the
model coupling zone. Thus, the models can be used for further investigations. By usage
of the calculated averages of model uncertainties from both models, the weighting factors

Figure 4: Model outputs, response surfaces and coupled model response surface
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are:
δM = 1− εM

εM + εP
= 0.633 δP = 1− εP

εP + εM
= 0.366 (19)

So, the numerical model with less model uncertainty will be used with 63.3 % for the model
coupling. The more uncertain physical model will be only considered with 36.6 % in the
coupled model. By the use of coupling equation 5, the coupled model function shown in
Figure 4 is determined. For further investigations and predictions of the system behavior
under other conditions, the optimal model input parameters for the coupled model can
be determined by parameter optimization. Therefore, the evaluated mathematical model
will be used. By checking the model conformity, the applicability for the parameter
optimization was also checked.

4 Conclusions

A method for the uncertainty based coupling of mathematical and physical models in
structural engineering is discussed. By usage of available model evaluation approaches
from current literature, the model evaluation process was introduced. The models were
checked for sources of uncertainties and the total uncertainties were determined. Based
on the determined model uncertainties, weighting factors were created to consider certain
models as the main part of the coupled model. By model conformity check, the coincidence
of the model responses was proved. For further investigations, the coupled model was
created. Furthermore a check of the model robustness can be determined by a check of the
first derivation of the model responses. The bigger the differences over the loading process
and the higher the variance between the considered models, the lower the robustness. For
the successful use of the coupling approach, the objective function of the coupled model
has the highest importance. In the next step, the usability of the shown coupling approach
will be checked on a real structural example including more than one objective function.
Also the limitations due to model robustness problems will be investigated within an
example.
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Abstract. Due to its variance reducing properties compared with random sampling,
Latin Hypercube sampling (LHS) is frequently used in Monte Carlo methods for the
probabilistic analysis of a system. An extension of the sample size is created in the case
of the LHS only by doubling its size. Especially with large samples and the perpetuation
of an existing correlation structure this can become a drawback of LHS.

This paper presents an engineering approach to the multiple extension of a Latin Hy-
percube sample. The objective is to extent the sample size but to keep the number of
realizations small. It is of particular importance that the present approach is able to
maintain the correlations between the input variables in the probabilistic analysis. The
quality of the statistical measures as well as the correlation setting is discussed and eval-
uated by means of simple example cases. By comparative analyses with LHS without
modifications, a benchmark of the method is performed. Subsequently the method is
applied to the sensitivity analysis of the aerodynamic performance of a two-stage high
pressure compressor.

Nomenclature

D∗ largest negative distance
between discrete and
continuous pdf

D critical K-S value
D̂ K-S value
F continuous pdf
I interval for LHS realization
k number of random variables
l level
ng group size eLHS
nsim sample size LHS
r correlation coefficient
r̃ rank correlation coefficient

R2 coefficient of determination
P probability
X random variable
CoI coefficient of importance
CoDCV coefficient of determination

with cross-validation
LHS Latin Hypercube sampling
eLHS extended Latin Hypercube

sampling
MCS Monte Carlo simulation
RP Restricted Pairing
SCR sample to coefficient ratio
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1 Introduction

The sensitivity analysis allows for an evaluation of the influence of uncertainties in the
input variables and model parameters on the output quantities. Thereby Monte Carlo
methods are frequently used. These have the advantage of being robust and easy to
use. Within the Monte Carlo simulation (MCS), the sampling method forms the core.
Through sampling a mapping of the continuous input variables in discrete implementa-
tions is achieved. In addition to random sampling (Simple Random sampling) a variety
of adapted sampling methods, see e. g. Beachkofski [1], Helton et al. [6] or Saltelli et
al. [17], are used. Great popularity enjoys the Latin Hypercube Sampling (LHS), which
in comparison to Simple Random Sampling (SRS) can reduce the size of the used sam-
ple while maintaining the statistical significance. A comparison of LHS against SRS was
done for example by Manteufel [12]. The method of LHS was first proposed by McKay
et al. [13] and further developed among others by Iman et al. [8]. Compared to SRS,
the method is characterized by a reduction of the variance. Thereby mean value as well
as the distribution function can be estimated unbiased. The bias in the estimation of the
variance is low and associated with a significantly lower sampling variability [6].

A drawback of the Latin Hypercube sampling is the strict procedure for the generation of
the realizations and the associated limitations in the extension of the sample. Merely a
doubling of the sample is simple to implement, since only this maintains the LHS design.

The results of a Monte Carlo simulation as for example sensitivities or robustness mea-
sures mostly are in the form of point estimators available. The statistical quality of these
estimators can only be determined after completion of a Monte Carlo simulation by us-
ing confidence intervals. If the quality is is not sufficiently, the carried out deterministic
calculations must be discarded and a new MCS with a larger sample size must be per-
formed. This approach is especially with time-consuming and therefore very "expensive"
deterministic calculations doubtful. In the literature, various methods for extending a
Latin Hypercube sampling are described.

Pleming and Manteufel use in [14] a level-group approach, where in each level a certain
number of groups can be added. After an initial LHS design is created, an equal number
of realizations in the form of a group is added. Thereby the initial bins are considered.
A certain number of groups is necessary to maintain the LHS design in each level. In the
work of Pleming and Manteufel the realizations are set at fixed bin fractions, similar to
the Descriptive sampling, and not uniformly distributed on the bin. The approach can
be combined with an algorithm for correlation or discrepancy control.

Vorechovskỳ pursued in [19] an approach consisting of an exponent and a base value, from
which the added realizations follow. Two methods: LLHS and HSLHS are presented,
which differ with respect to the calculation rule and the base value. Also, the Descriptive
Sampling approach is used, since each realization is set at the median of the corresponding
interval. A disadvantage of the LLHS is the deviation from the LHS design, which results
in a grouping around the mean. If all existing realizations are considered the HSLHS
yields in a LHS design, however each extension by itself is not a LHS design.

Sallaberry et. al [16] chose an approach for the extension of the LHS by doubling the
sample, however thereby it is possible to reach an existing correlation structure without
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the use of a subsequent correlation control procedure.

A method for extending a Latin Hypercube Samples should ideally have the following
features:

• The concept of the LHS design should be maintained. At least it should be possible
to achieve a LHS design at a certain step.

• The extension of the sample should be as variable as possible.

• The correlation adjustment is possible within the method or with an additional
method.

The first two criteria act usually in opposite directions. A further reasonable feature can
be:

• Each extension is a separate LHS design in the same parameter space.

The paper includes the following sections. After a brief description of the LHS, Chapter
3 presents an method to extend a Latin Hypercube sampling. The method is linked to
a correlation control algorithm. Subsequent the performance of the extension method is
shown on a simple example. In Chapter 4 the extension method is applied to the sensitivity
study of the influence of geometrical manufacturing tolerances on the performance of a
2-stage high-pressure compressor.

2 Latin Hypercube Sampling

First the algorithm of the Latin Hypercube sampling should be briefly introduced to
illustrate the method of extended Latin Hypercube Sampling (eLHS) afterwards. In Latin
Hypercube sampling each continuous distribution of the input variables is divided into
equiprobable strata or bins. For a sampleXn of the random variableX with n = 1, ..., nsim

the probability of each strata is given by Pn = 1/nsim. Hence, follow the intervals In in
which the realization are located. The calculation of the intervals is performed in the
present work by numerical integration of the respective probability density function. The
realization n is set uniformly distributed in the interval In. For asymptotically expiring
functions such as the normal distribution, with no assigned bounds, the realization of the
left-most and right-most interval I1 and Insim

is assigned with the value which corresponds
to the centroid of an equivalent triangle on the abscissa. This differs from the approach of
the LHS, but improves the reproduction of such distributions significantly. The algorithm
described has to be repeated for all k input variables.

Subsequently, the implementations have to be assembled according to their dependence
or independence. To obtain independent realizations, Iman and Conover used in [8] the
approach to choose the intervals by k permutations of the numbers (1, ..., nsim). For the
generation of dependent variables with a given correlation structure Iman and Conover
[7] presented the Restricted Pairing (RP). An adaptation of the method in the form of
an repetitive sequence is shown in the work of Dandekar et al. [4]. Also, in the present
work the RP method is used iteratively, based on the concept of Dandekar et al.. The
correlation structure is adjusted about three hierarchized iteration loops and a stopping
criterion according to Voigt [18] based on the maximum correlation error is used. It should
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be noted that in this work the relations between k input variables are solely set in the
form of correlations, which is not a complete description of the dependence structure in
a mathematical sense.

3 Extended Latin Hypercube Sampling

3.1 Methodology

The presented extended Latin Hypercube sampling (eLHS) is based on the choice of
two parameters: level l and group size ng. It is assumed that still no sample exists.
The approach is to select a small group size, such as the number of input variables
k + 5 realizations, and reach the desired number of realizations nsim by repetition l
times. Is a probabilistic simulation already given, the number of realizations respectively
simulations corresponds to the group size. If no sample exists, level 0 corresponds to a
Latin Hypercube sampling and is generated according to the method described in Chapter
2. The in level 0 used intervals are henceforth referred to as the root intervals I∗n, the
sample itself as the root sample. Subsequently the correlation of the variables is set with
the above presented iterative Restricted Pairing. Note, the Restricted Pairing can only
be applied if the group size ng exceeds the number of variables.

The eLHS works with a doubling of the intervals In. However, this is only required if no
free intervals are available. In each expansion step respectively level ng realizations are
added. One new realization is chosen per root interval. Is more than one free interval
per root interval available, the selection of the interval is based on the largest negative
distance D∗ between continuous and discrete distribution function.

D∗ = min
1≤i≤nsim

(
i

nsim

− F (yi)
)

(1)

The valueD∗ is a measure of the lack of realizations in the probability distribution function
or density function and is derived from the Kolmogorov–Smirnov test. The method of
extending the sample is depicted in Figure 1.

10
level 0

level 1

level 2

2 groups

3 sgroup

level 3 4 sgroup

Figure 1: Example with group size of 3 and 3 levels

In the first level, the root sample is doubled and the new realizations (in red) are assigned
to the free intervals. In the second level again a further doubling of the root sample
takes place, but now there are two free intervals per root interval available. By using D∗,
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the respective intervals are selected. In the third level the free intervals are filled up (in
green), no duplication takes place.

The setting of the correlation of the newly added realizations is performed using the
iterative Restricted Pairing after the generation of the realizations in each level. The
entire procedure is shown in Figure 2. Sallaberry et al. [16] show that two samples with
the same correlation structure in turn lead to a similar correlation structure when they
are joined together. In the presented procedure the whole sample is tested, after adjusting
the correlations of the new realizations and joining them with the existing sample. The
correlation adjustment of the new realizations is repeated until predefined stop criteria
are met. Three criteria are applied. On the one hand the maximum correlation error,
on the other hand the minimal Euclidean distance L of the realizations and a value G,
which expresses in physical analogy the sum of the repulsive forces upon considering the
realizations as electrically charged particles. A detailed description of L and G can be
found in Liefvendahl & Stocki [11].

LHS RP 1. set

eLHS RP 2. set CC

correlation control (CC):

max. correlation error < criterion

minimum distance > criterion

force analogy term < criterion

no

level 1:
(2 groups)

data set
yes

Figure 2: Correlation adjustment

Later on in this work, the generation of random numbers as well as the control of the
correlation is always denoted by the term eLHS.

3.2 Evaluation of the eLHS

For the evaluation of the eLHS two standard normal distributed random variables are
generated according to the experimental matrix in table 1. For each test point the cor-
relation values of r = [0, 0.25, 0.5, 0.75, 0.99]T are examined. This results in a 3 × 8 × 5
experimental matrix.

To compare the eLHS with the LHS the following samples were generated.

nsim = [15, 20, 30, 40, 50, 60, 65, 80, 100, 120, 130, 160, 200, 240, 260, 320]T (2)

Therein the same correlation values as for the eLHS are used. This results in a 16 × 5
experimental matrix. Each test point of the two experimental matrices was repeated 1000
times. The eLHS will now be tested against the LHS regarding the correlation between
the random variables, the reproduction of the distribution function by means of the K-
S test and the reproduction of the mean value as well as the standard deviation. The
comparison is done with the mean values based on the 1000 repetitions.
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level (group) group size
5 10 20

3 15 30 60
4 20 40 80
6 30 60 120
8 40 80 160
10 50 100 200
12 60 120 240
13 65 130 260
16 80 160 320

Table 1: Experimental matrix eLHS

3.2.1 Correlation of the input values

The comparison in terms of correlation of the random variables is carried out based on the
mean absolute error between the predetermined and actual realized correlation coefficient.
The rank correlation coefficient r̃ according to Spearman is always used for the correlation
coefficient realized.

Figure 3: Comparison of LOG absolute correlation error for LHS and eLHS

Figure 3 shows for the group size of ng = 5 and 20 an overview of four different levels
l = [3, 4, 10, 16]T and their comparable LHS sampling. By a comparable LHS sample the
same number of realizations nsim as in the eLHS sample is meant. Generally it can be
observed that the iterative Restricted Pairing leads to very low mean absolute correlation
errors of maximal 10−2 for LHS and eLHS. The correlation error of the eLHS is in the
majority of cases located below that one of the LHS, since most of the values are below
the diagonal line. Only for a small number of realizations ng = 5 and a high correlation
value r = 0.99 larger mean absolute correlation errors occur for the eLHS. That is shown
in detail on the left side of figure 4. Over the predetermined correlation value the mean
absolute correlation error of comparable eLHS and LHS is plotted. For high correlation
values at low group size, the correlation control algorithm is not able to deliver the same
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performance for the eLHS as for the LHS with correspondingly l times higher number of
realizations. Pleming et al. [14] therefore proposes to choose the size of the sample four
times the number of variables when applying Restricted Pairing.

Figure 4: left: Absolute correlation error for ng = 5; right: Number of Levels against
LOG absolute correlation error for eLHS

On the right side of figure 4, a comparison of the various group sizes and level is shown
for the mean absolute correlation error. A distinction is made within the five computed
correlation values. Once again it becomes clear that the samples with low group size
and high correlation coefficient result in the highest deviation. Comparing the samples
with a group size of ng = 10, the largest absolute correlation error also arises from high
correlations of r = 0.99. At a group size of ng = 20, and thus 10 times the number of
variables, this event no longer occurs. With increasing group size, and thus variability of
each level the mean absolute correlation error decreases. An increase in the number of
levels mostly also results in a decrease of the error. Based on the conducted experiment
only trends can be shown for the influence of the level on the correlation value, here
further investigations have to be conducted.

3.2.2 Reproduction of the distribution function

The discussion of the reconstruction of the distribution function is performed using the
Kolmogorov-Smirnov test and the resulting value D̂.

D̂ = max
1≤i≤nsim

∣∣∣∣F (yi)−
i

nsim

∣∣∣∣ (3)

The Kolmogorov-Smirnov test can be used to check whether a discrete distribution func-
tion corresponds to a particular distribution in the form of a continuous distribution
function F . In the experiment the distributions of the input variables are known.

Figure 5 shows the mean K-S value over the number of levels for three selected repre-
sentative parameter combinations. The error bars represent the standard deviation of
the value resulting from 1000 repetitions. The progression of D̂ for the three parameter
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Figure 5: Mean K-S-value vs number of level

combinations are very similar. As was to be expected, D̂ decreases with increasing sam-
ple size and group size. The K-S values of the level 4, 8 and 16 correspond to those of
the LHS. These levels have no free intervals In. Due to the free intervals at the other
levels, errors arise compared to the LHS which are visible in a worse K-S value. Also,
the variability of the K-S values increase. The worst mean K-S value occurs for a group
size of ng = 5 and level 3 with D̂ = 0.0891. A reference value for the assessment derives
from the critical value D. It applies to random events and thus actually only for random
sampling. At a significance level of α = 0.05 and a sample of nsim = 15, the value for D is
0.338 (taken from [15]). Thus D̂ is smaller than D. In the case of a random sampling the
hypothesis to accept the distribution as a standard normal distribution would therefore be
approved. A comparison of the eLHS with random sampling (Simple Random Sampling)
is still pending.

For a LHS the maximum occurring error with respect to the K-S value is 1/nsim and
is achieved if a realization of the sample is located on the edge of an interval In. The
depicted threshold of 1/nsim is slightly above the average K-S value of the LHS with 1000
repetitions. This demonstrates that very often a realization of the sample is placed near
the interval borders, even in small samples.

The correlation of the random variable has no effect on the reproduction of the distribution
function.

3.2.3 Reproduction of the mean value and standard deviation

The mean of one of the two generated random variables over the number of levels for three
parameter combinations is shown in figure 6. The mean is again obtained by averaging
from 1000 repetitions. Error bars show the standard deviation of the averaged value.

As for the reproduction of the distribution function the mean values for eLHS and LHS
of level 4, 8 and 16 lie closely one upon the other. Also, the associated scatter in the
form of the standard deviation can be compared. There are no vacant intervals at this
level and the eLHS corresponds to a LHS concerning the assignment of the intervals In.
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Figure 6: Mean value over the number of levels

The other levels show deviations which decrease with increasing group size (from left to
right). A characteristic shape of the deviations appears by comparing the three group
sizes. It results from the allocation of intervals. Based on D∗ for realization Xn the new
realization is always added in the interval below Xn. An exception only arises if:

|D∗| = |F (yi)− 1| with i = nsim (4)

Then the interval above the highest realization is chosen. In level 3 exist two free intervals
per root interval, but only one is used. In the root interval I1 the free interval below the
smallest realization is assigned. However, the free interval above the largest realization
in the root interval Insim

stays empty. Thus, the mean of the eLHS is shifted to smaller
values. In level 6, there are three free intervals per root interval, however, only one will be
assigned. In the root interval I∗nsim

above the largest realization remains only one vacant
interval, whereas two vacant intervals remain below the smallest realization in the root
interval I∗1 . Thus, the mean of the eLHS is shifted to larger values. All other shifts of the
eLHS mean value can be explained in the same manner.

The reproduction of the standard deviation depending on the number of levels and group
size is shown in figure 7. The corresponding standard deviation of the standard deviation
is plotted in the form of error bars, and results from the 1000 repetitions of the sampling.
The deviation of the LHS with respect to the target value decreases asymptotically with
increasing number of realizations and approaches from above the target value.

Unlike the mean value, the mean standard deviations of eLHS and LHS do not lie on
top of each other in the levels 4 and 8. This can approximately be achieved at level 16.
The deviations to the LHS decrease with increasing group size. In the level 4 and 8,
the eLHS underestimates the target value significantly, whereas the LHS overestimates
the value. The occurring scatter of the standard deviation in these levels is comparable.
The reason for the underestimation of the target value is the generation algorithm for
the new smallest and largest realization. As stated above, in the used LHS algorithm for
asymptotically expiring functions with no assigned bounds, the realization of the left-most
and right-most interval I1 and Insim

is assigned with the value which corresponds to the
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Figure 7: Standard deviation over the number of level

centroid of an equivalent triangle on the abscissa. This also applies to new realizations in
the new intervals I1 and Insim

in each extension step, which results in an underestimation
of the standard deviation. If free intervals are available after an extension step, as in the
levels 3, 6, 12 and 13, the interval assignment comes to bear as discussed for the mean
value. Deviations to the target value and increased scatter arise. These are reduced with
increasing group size.

As well as for the reproduction of the distribution function, the correlation value does not
affect the reproduction of mean and standard deviation.

4 Sensitivity analysis of a two-stage high pressure
compressor

The application of the method of the previous chapters is carried out by the sensitivity
analysis of a two-stage high-pressure compressor. Thereby, the possibilities of the eLHS
should be in the foreground.

The deterministic CFD calculation of the two-stage compressor was provided by the Rolls-
Royce Deutschland Ltd & Co KG. The compressor consists of two blade and two stator
rows, as shown in figure 8, and is part of an jet engine high pressure compressor. The
cantileverd stators were modeled with hub gap and casing fillets, the rotors with tip
gap and hub fillet respectively. The calculation of the deterministic numerical model
was performed with the Hydra Suite of Rolls-Royce Deutschland Ltd & Co KG. The
automated grid generation was done with the program Padram also provided by Rolls-
Royce Deutschland Ltd & Co KG. No adjustments of the grid were made for the different
realizations, always the same grid setup was used. The boundary and initial conditions
are given by radial profiles. At the inlet these are the total temperature, total pressure,
radial and tangential flow angle and the Spalart-variable. At the outlet a mass flow is
specified. The data transfer between the blocks is done by mixing planes.
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Figure 8: 2 Stage compressor

The parameterization of the airfoil is based on the physical parameters used by Heinze
et al. [5]. The geometry variations were only applied to the first rotor. Therefore the
delta-parameter model of Lange et al. [9] was used. It was shown in [10], that in the
construction of compressor blades due to the high correlation of the airfoil parameters in
radial direction only one averaging section in spanwise direction is sufficiently accurate.
This results in 14 parameters for the entire airfoil and one parameter for the radius of the
fillet. An overview of the used parameters is given in figure 9 and table 2.

symbol description
axpos axial position of the leading edge point
tanpos tangential position of the leading edge point
c chord length
γ stagger angle
αLE angle at leading edge
αTE angle at trailing edge
tmax maximum thickness
xtmax position of maximum thickness
wmax maximum camber
xwmax position of maximum camber
aTE large semi axis of the trailing edge ellipse
bTE small semi axis of the trailing edge ellipse
aLE large semi axis of the leading edge ellipse
bLE small semi axis of the leading edge ellipse
fillet fillet radius

Table 2: Description of the geometric parameters

The sensitivity analysis was conducted using the Monte Carlo simulation. As sampling
method, eLHS was applied in combination with the iterative Restricted Pairing. Based on
typical geometric variations for compressor blades due to manufacturing variability, the
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Figure 9: Geometric parameters

probability distributions of the 14 parameters were approximated by normal distributions.
The relationship between the parameters is specified by correlation coefficients. The
probabilistic simulation was started with a sample of a group size of ng = 30 realizations.
Subsequently another 3 groups were added up to level 4 which ultimately yielded in 120
realizations. The time to generate the random numbers amounted to 144.5 minutes on
one CPU of a Intel R© Core— i7 computer at 3.4 GHz and 24 GB RAM. Within the MCS
led seven deterministic calculations to no solution. One of them belonged to level 1, two
to level 2, two to level 3 and two to level 4.

In a first step, the sensitivities to the input variables will be described on the basis of
Spearman’s rank correlation coefficient. The result quantity is the isentropic compressor
efficiency of the two-stage compressor. It compares an actual conversion of energy in the
form of the polytropic compressor work at a given pressure ratio with an ideal conversion of
energy in the form of the isentropic compressor work at a given compressor pressure ratio.
The rank correlation coefficient can describe linear and monotonic nonlinear relationships.
In case of a simple MCS without eLHS only one condition is known and a comparison
of the rank correlation coefficient with increasing sample size is only achievable by a new
MCS. Only with the eLHS the statistical quality can be verified after each level and
a decision on the further course of the calculation can be taken. Figure 10 shows in
pie charts for the level 1 and 4 the rank correlation coefficients between the isentropic
compressor efficiency and the input variables.

Within the 7 most important input parameters for the isentropic compressor efficiency
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Figure 10: Pie chart for isentropic compressor efficiency

a shift in the ranking and magnitude of the values occurs from level 1 to level 4. Six of
these values are already recognized in level 1, but the rank correlation coefficient between
isentropic compressor efficiency and maximum camber shifts to smaller values and moved
down in the ranking.

Figure 11: Rank correlation coefficient and 95% confidence interval

For three selected rank correlation coefficients, figure 11 shows a detailed presentation of
the magnitude of the coefficient over the size of the sample and thus the level. Further-
more, the figure shows the 95% confidence interval of the rank correlation. The calculation
of the confidence interval was performed using Fisher’s z-transformation and was taken
from [15].

In level 1 the stagger angle is the most influential input variable based on the rank
correlation coefficient. With an increase of the stagger angle the efficiency increases. The
confidence interval shows the stagger angle with a 95 percent probability always in a
positive region. With increasing number of realizations and thus level, this statement is
clarified and the stagger angle remains the most influential input variable. With respect
to the influence of the stagger angle, the simulation could be stopped after level 2.

The maximum camber is the third most important input variable in level 1. Based on
the rank correlation coefficient the efficiency decreases with an increase in the maximum
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camber. The confidence interval is located entirely in the negative range of the rank
correlation coefficient, however, it stretches over a range of very small negative values of
−0.12 up to very large negative values of −0.71. In level 2 the value of the rank correlation
coefficient increases towards zero. Due to this, the size of the confidence interval hardly
changed. The maximum camber can still have no or a negative impact on the efficiency.
At level 3 and 4, the value of the rank correlation coefficient decreases slightly and the
confidence interval is reduced. With a slight negative correlation the influence of the
maximum camber moves downward in the ranking of the most important input variables
so that it is only the tenth most important input variable in level 4.

An opposite behavior is shown for the influence of the small semi axis of the trailing
edge ellipse. The value of the rank correlation coefficient with approximately 0.3 hardly
changes with increasing level. The correlation is low, an increase in the thickness of the
trailing edge of the profile is followed by a small reduction in the efficiency. However
in level 1 the range of the confidence interval reaches from 0.12 to -0.57 so that the
effects of the input variable are not clearly assignable. With an increase of the sample,
the confidence interval is reduced and the statistical quality or significance of the rank
correlation coefficient rises. With respect to the rank-correlation coefficient of the small
semi axis of the trailing edge ellipse, the simulation may have been stopped after Level 3.

The input variables of the MCS are correlated with each other, so are mutually dependent.
A sensitivity analysis based on the correlation coefficient is difficult due to the problematic
assessment of cause and effect. A statistical measure which is unaffected by low input
variable correlations and is able to assess the sensitivities of the result quantities on the
input variables is represented by the coefficient of importance (CoI) [3]. The CoI is based
on modified response surfaces and is calculated with the coefficients of determination R2

[15] by:

CoIi,j = R2
j −R2

i,j (5)

For the determination of R2
i of an input quantity Xi to a result quantity Xj all terms

that contain the quantity Xi are omitted from the response surface which describes Xj.
Depending on the used response surface, the CoI also describes relationships of higher
order. To use the CoI, the system behavior must be sufficiently accurate reflected by the
response surface. An assessment of the quality of the response surface can be performed
with the cross-validation.

Level 1 2 3 4
SCR 1.813 3.563 5.375 7.063
R2 0.958 0.913 0.915 0.899

CoDMCCV 0.748 0.834 0.876 0.865
average R2 - CoDMCCV 0.853 0.874 0.895 0.882

Table 3: Parameter of the response surfaces

The cross-validation is based on separate data sets for the calculation and evaluation of
the regression model. For this purpose the sample respectively the supporting points of
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the response surface is divided into training and validation realizations. In this work, the
Monte Carlo cross-validation (MCCV) by Beschorner [2] was used. The splitting ratio
amounted to 0.85 and the number of runs was 1000.

In the following, the sensitivities of the input variable to the result quantity total pressure
ratio will be displayed using the CoI. The total pressure ratio refers to the increase in
pressure which the two-stage compressor provides. The system behavior has been approx-
imated with a first order polynomial without mixed terms in each level. Table 3 shows
the achieved coefficients of determination, coefficients of prognosis (CoDMCCV ) due to the
cross-validation and their average. Further, the ratio (SCR) of sample size to the needed
coefficients of the response surface is presented.

1. order (R = 0.913)
2

g

tmax

bTE

xwmax

bLE

wmax

aTE

aLE

xtmax

tanpos

axpos

aLE

aLE

c

fillet

Figure 12: CoI bar chart for total pressure ratio at level 2

R2 and CoDMCCV differ yet distinctly from one another in level 1. From [2] it is known that
at low SCR, the CoDMCCV underestimates the quality of the response surface, whereas the
R2 overestimates it. A prediction of the possible achievable quality of the response surface
is provided by the average of R2 and CoDMCCV . Since in level 1 a possible improvement
of the CoDMCCV of 0.1 is available, the LHS is extended and another group of realizations
is added. Thus, the SCR rises, the R2 decreases, the CoDMCCV also increases and the
spacing between R2 and CoDMCCV is reduced. The average of R2 and CoDMCCV changed
only slightly. The potential for an improvement with a further extension is significantly
less. In case of a practical application the extension would be terminated at this point
and the CoI calculation could be carried out. In the level 3 and 4 the values of R2

and CoDMCCV approach further to each other. The potential for improvement with an
extension of the sample is low, a saturation occurs.

From the response surface of the level 2 the coefficients of importance were calculated and
shown in figure 12. The stagger angle is the dominant input variable with respect to the
total pressure ratio. An extension of the sample leads only to negligible changes in the
CoI.
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5 Conclusion

The paper presents a method to extend a Latin Hypercube sampling with further real-
izations. If the extension is considered before the start of a probabilistic simulation, the
presented approach achieves the biggest advantages over LHS. The desired number of
realizations can then be realized by repeated extension. The method does not maintain
the LHS design in each level, however, thus a more variable extension is achieved. If
at a certain level all intervals are occupied, the extended sample corresponds to a LHS.
Each extension represents an LHS design for itself. This makes it possible to investigate
an application of the t-statistics on l extensions in further analyzes. The setting of the
correlation as a measure of relationship between the random variables was realized by
an iterative Restricted Pairing. It was demonstrated, that the application of an iterative
RP leads to low deviations from the target correlation for LHS and eLHS despite small
number of realizations.

The comparison of eLHS against LHS showed that the deviation from the LHS design
cause errors in the reproduction of the distribution function and of the statistical measures
mean and standard deviation. If all intervals are occupied, the representation of the
distribution function and the mean value corresponds to that one of a LHS. The standard
deviation is underestimated by the extension method. However, with increasing group
size and levels the deviation to the target values decreases.

The benefit of an extension method has been shown by the sensitivity analysis of the
performance of a two-stage high-pressure compressor under scattering geometry. As a
result of the variable configuration of the probabilistic analysis with the sample extension
method it is possible to use the statistical quality, e.g. confidence intervals, of certain
statistical measures as a criterion for an abortion. The extension results in an increased
gain of information from the probabilistic analysis. Based on the sensitivity analysis using
the rank correlation coefficient and coefficient of importance the practical application of
the extension method was shown.
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Abstract. The European road network has a vital importance for the European economy.
Many infrastructures linked to the network are permanently aging and deteriorating. Even
smaller disruptions due to traffic restrictions or failure of some elements of the network
may result in high consequences. The protection of such‘critical’ infrastructures should be
based on considerations of significant hazards affecting the system. Bridges and tunnels
are perceived as the most vulnerable components of the road network. In this study
assessments of individual highway bridges exposed to accidental situations are discussed
from a general point of view. A methodology of the risk-informed decision making based
on Bayesian networks is developed. From an economic point of view the objective is
to minimize the total working-life cost (risk) of the bridge. The decision parameter(s)
to be optimised may represent resistance in the case of upgrading, stand-off distance,
properties of energy absorbing shields etc. Total structural costs consist of initial, in-
service costs and consequences of structural failure. For risk analysis use of Bayesian
networks is advocated. The present study shows that decisions concerning protective
measures can be based on the risk-based optimisation of the expected costs. Actions to
be considered in the assessment may include normal and accidental (natural or man-made)
ones. Protective measures may comprise restriction of physical access, detection efforts,
security planning and coordination, and construction modifications improving structural
robustness.

Keywords: risk-informed decision making, economic optimisation, highway bridges, ac-
cidental situations.

1 Introduction

The European road network has a vital importance for the European economy. Even
smaller disruptions due to traffic restrictions or failure of some elements of the network
may result in high consequences and negative environmental impacts [1]. In such a case
the network and its major components are classified as a “critical infrastructure (object)”
that can be defined according to the European Directive 2008/114/EC [2] as:

an asset, system or part thereof which is essential for the maintenance of vital societal
functions, health, safety, security, economic or social well-being of people, and the disrup-
tion or destruction of which would have a significant impact in a state as a result of the
failure to maintain those functions.

The Communication [1] indicates that the protection of critical infrastructure is to be
based on an all-hazards approach; recognising the threat from terrorism as a priority.
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Cost–benefit and other risk studies are deemed to be useful particularly for low proba-
bility–high consequence events where public safety is a key criterion for decision making
[22].

Bridges are perceived as the most vulnerable components of the road network [3]. While
single bridges can fail under particular structural damage or loads, the overall network
performance is more likely to be affected by events that may have impact on many bridges
of the network, for example by loading due to earthquakes or floods.

Assessments of individual bridges are discussed from a general point of view in this study.
Methodology of the risk optimisation based on Bayesian network, applied previously for
analyses of flooding [9] is adapted for highway bridges exposed to accidental situations.

It is noted that the terminology is adopted from Eurocodes [6, 7] and other European
documents [25, 1].

2 Identifying critical bridges

The following aspects should be taken into account when selecting critical bridges [21]:

• location in urban environment,

• conventional construction type,

• possible traffic bottleneck formation,

• large bridge over the sea,

• landmark bridge,

• historical and cultural aspects,

• difficulty to rebuild bridge,

• significance due to traffic volume.

Detailed procedure for the identification of possible critical bridges is provided in [21]. The
failure consequences can be seen as an appropriate indicator of the importance of a bridge
[25]. The legislation of the Czech Republic provides several criteria for identification
of critical infrastructures. For example the object is considered as critical when it is
essential for the maintenance of vital societal functions, health, safety, security, economic
or social well-being of people, and its malfunction affects more than 125 000 persons.
Primarily based on this criterion, most bridges on highways, motorways and main routes
are considered as critical.

3 Principles of risk-informed decision making

The basis for risk-informed decision making is provided considering the latest draft of
ISO/DIS 2394:2014. The decision making should in principle aim at the solution minimis-
ing risks, considering possible events and their unfavourable consequences. Such events
are often caused by extreme hazards including flooding. Adequate hazard scenarios and
relevant occurrence probabilities need to be estimated [23, 17], often on the basis of expert
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assessments and judgements.

When for mutually independent hazard situations Hi the failure F of the component given
a particular hazard situation Hi occurs with the conditional probability P (F |Hi), then
the total probability of failure Pf is given by the law of total probability as:

Pf =
∑

i

P (F |Hi)P (Hi) (1)

The conditional probabilities P (F |H − i) are determined by analyses of the hazard sce-
narios Hi. Thereby, one-year reference period is normally considered. The situations Hi

may lead to several events Eij (e.g. excessive cracking, failure of a structural member,
collapse of the bridge) with adverse consequences Cij that are commonly expressed in
monetary units. The total annual risk R corresponding to the hazard situations Hi can
be expressed as:

R =
∑

ij

CijP (Eij|Hi)P (Hi) (2)

If the acceptable risk Rt [16] is specified, the bridge or its structural members can be
assessed on the basis of the inequality R < Rt. When the criterion of acceptable risks
is not fulfilled, it is necessary to modify the system by appropriate interventions aiming
at the reduction of probability of occurrence of adverse events (protective measures) or
at the reduction of their consequences (mitigation measures). Further information on the
probabilistic risk analysis can be obtained from [23, 16, 14].

From an economic point of view the objective is to minimize the total working-life cost
of the bridge. For simplification consider hereafter assessment of the cost efficiency of a
single protective measure (the presented procedure can be readily extended for decisions
concerning several protective measures).

The decision parameter(s) d to be optimised may represent resistance in the case of
strengthening, stand-off distance, properties of energy absorbing shields etc. The param-
eter may be continuous, discrete or attain a single value. In general the costs of a selected
measure consist of:

• cost C0 independent of the decision parameter (e.g. costs related to surveys, design,
economic losses due to traffic interruptions),

• marginal cost Cm per unit of the decision parameter.

The failure consequences Cf can be estimated on the basis of the total annual risk R.
Since the main reason for the existence of civil infrastructures is public interest, failure
consequences need to include all societal losses, see Section 5.

For consistency, all the costs need to be expressed on a common basis. Costs of the
measure are normally specified in a present value. All the expected failure costs that
may occur within a reference period should thus be likewise estimated in the present
worth. Assuming almost independent failure events in subsequent years and small prob-
abilities P (Hi), the expected failure cost related to a reference period tref (in years) can
be estimated as [11]

E[Cf (tref , d)] ≈ R(d)[1− 1/(1 + q)tref ]/[1− 1/(1 + q)] = R(d)Q(q, tref )(3) (3)
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where q = annual discount rate (e.g. 0.03, an average long-run value of the real annual
discount rate in European countries during the last years, however this rate is currently
lower); and Q = time factor. The expected total costs Ctot can now be expressed as
(omitting the symbol of expectation for convenience of notation):

Measure applied: Ctot(tref ; d) ≈ C0 + Cmd+R(d)Q(q, tref ) (4a)

No measure: Ctot(tref ) = R(nomeasure)Q(q, tref ) (4b)

From eqn. (4a) the optimum value of the decision parameter dopt (the optimum measure)
can be assessed:

minimumdCtot(tref ; d) = Ctot(tref ; dopt (5)

The considered measure is consequently rejected when the total cost according to eqn.
(4b) is less than the total cost of the optimum upgrade.

Apparently a more complex cost model would consider costs of inspections, maintenance,
upgrades and other life-cycle costs. However, in most cases this extension hardly affects
the optimum measures mitigating risks in accidental situations.

4 Risk optimisation using Bayesian networks

4.1 Advantages of Bayesian networks

The risk of various technical systems in hazard situations can be analysed using the
standard techniques such as fault trees, event trees, cause-consequence method, Bayesian
(causal) networks and Petri networks [23]. Fault trees cannot directly accommodate de-
pendent basic events, which may be a serious limitation for civil engineering applications.
In principle event trees can deal with such dependencies; however this requires great care
during event-tree construction [8]. Moreover both methods suffer from the difficulty in
updating based on new information. Petri Nets provide a powerful platform, but the
evaluation often takes basis in Monte Carlo simulations requiring considerable computa-
tional demands [20]. These drawbacks can be reduced by the use of Bayesian probabilistic
networks with discrete nodes, supplemented by decision and utility nodes [19].

With regard to practical applications Bayesian networks facilitate [10]:

• break down of a complex task (system of structural elements) into smaller sub-tasks
(foundations, piers, super-structure) that can be analysed separately by different
experts,

• illustrative interpretation of knowledge concerning structural elements based on re-
sults of measurements and expert appraisals,

• consideration of uncertainties related to action effects, material and geometrical
properties, and also to the applied theoretical models (so-called model uncertain-
ties),

• modelling of complicated dependencies amongst initiation events of actions, their
effects, structural properties and effects of protective measures,
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• updating of results when new information becomes available for example related to
action or resistance parameters.

The analysis of Bayesian network is based on the specification of conditional probabilities
of nodes under assumption of information on other nodes (in the direction of casual
links). The analysis is based on the concept of conditional probabilities and the theory of
probability. Detail information can be found for example in [23, 19, 12].

4.2 Example of the network

Figure 1 shows an example of the Bayesian network (influence diagram) that may provide
a general basis for a particular assessment. Note that the network is significantly simplified
and has to be modified to reflect specific conditions of an analysed structure and considered
accidental situations. In practical applications each random node may represent a sub-
system and additional utility nodes may be needed. The following nodes are included in
Figure 1:

Figure 1: Example of the Bayesian network.
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• chance nodes - Accidental situation, Action effect, Structural damage, Geotechnical
conditions, and Structural properties,

• decision nodes - Permanent and Operational measures,

• utility nodes - Cost of measures, Societal and Economic consequences, and Total
cost.

Directional arrows, interconnecting all the nodes, indicate the causal links between parent
and children nodes.

Given an accidental situation, the action effects depend on accepted protective measures
and may lead to structural malfunction due to damage, local failures, partial or total
collapse of the bridge. This is covered in the network by the random node Structural
damage. Probability of structural damage and its extent may depend on geotechnical
conditions and structural properties.

Structural damage may result in societal and economic consequences. The utility node
Societal consequences describes the human consequences in terms of expected number of
fatalities and injuries per year due to the structural collapse and is related to a monetary
value through a compensation cost for a fatality, which may be approximated by the
so-called societal value of statistical life; see ISO/DIS 2394:2014 or [12].

5 Modelling of selected nodes

Bridges may be exposed to the following actions [27]:

• normal actions due to self weight, traffic, temperature or wind,

• accidental (natural) actions such as earthquake, landslide, hurricane and tornado,
avalanche, rock fall, flood and tsunami,

• accidental (manmade – malicious or unconscious) actions such as explosion, fire,
impact of vehicle or projectile, mining settlement,

• human errors - design error, material flaw, construction error, misuse, lack of main-
tenance.

The model of an accidental action takes into account the annual probability of occurrence
of the accidental situation and in some cases the conditional probability of the occurrence
accidental action itself (e.g. success rate in the case of blast terrorist attack). This
information may be gained from experts, scenario analysis and statistical analysis of
available data [24]. Limited statistical information concerning these probabilities can be
found in [22].

Guidance for the development of probabilistic models of accidental action effects is pro-
vided in [28]; for instance models for earthquake, impact load and fire are discussed in
[15] and blast loading in [18]. Damage on the bridge exposed to normal and accidental
loads is then estimated on the basis of system modelling considering the effects of applied
protective measures. Overview of possible consequences is provided in [21]:

• direct consequences resulting directly from the structural damage, examples include:
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– fatalities or injuries due to structural collapse, blast pressure or secondary
projectiles (concrete, steel, glass),

– economic losses due to cost of rehabilitation or rebuilding, cost of damaged
vehicles,

• indirect consequences describing other impacts on the society, for instance:

– fatalities or injuries due to malfunction of the bridge (e.g. in an emergency
situation),

– losses due to detours, traffic delays, loss of tolls, losses of local businesses
affected by malfunction of the bridge,

– environmental impacts such as air pollution, energy use or fuel consumption,

– psychological consequences including loss of reputation or undue changes in
professional practice,

– infrastructure interdependency costs.

Injuries and fatalities often expressed in terms of compensation costs or increased insur-
ance (see ISO/DIS 2394:2014). Indications for quantification of failure consequences are
provided in [13, 26].

Permanent or operational protective measures may include [2]:

• restriction of physical access (barriers, security officers to control access, eliminated
parking near critical structures, landscaping to increase standoff distance),

• surveillance and detection efforts (inspections, warning that the bridge is being
monitored, enhanced lighting, motion sensors, removal of overgrown vegetation),

• security planning and coordination (security plans to identify critical components
and establish their protection, emergency telephones, means for rerouting traffic to
enable access of emergency vehicles, restricted access after span failure),

• structural modifications (protection of lower parts of cables on cable-stayed and
suspension bridges, reinforce welds and bolted connections to ensure plastic capacity,
use of energy absorbing bolts to strengthen connections and reduce deformations,
alternate load paths).

It is noted that efficiency has to be assessed for the considered measures. For instance
investments into motion sensors may decrease needs for the restriction of physical access.
The control of access by guards is often ineffective since they can be intentionally dis-
tracted by secondary attacks. For blast attacks stand-off distance is a key parameter and
can be hardly replaced by protective walls.

6 Case studies under development

The presented methodology is at present being applied in two case studies that have been
selected considering the criteria outlined in Section 2:

• highway bridge built over an existing bridge forming a ‘double-deck’ bridge (Figure
2):
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– the highway bridge is vulnerable to a terrorist attack due to accessibility pro-
vided by the rarely used bottom bridge,

– malfunction of the upper bridge requires long detours of highway traffic on local
roads, implying significant failure consequences and enhancing attractiveness
of the bridge as a target,

• highway bridge over a wide and deep valley (Figure 3):

– the piers of the bridge are accessible by local roads and can be exposed to a
blast attack or impact,

– the height of the piers complicates repair of main girders of the bridge increasing
significantly failure consequences,

– petrol station located nearby the bridge can be a target in order to damage
highway, with a significant impact due to exceptionally long detours for lorries.

Figure 2: ’Double-deck’ bridge.

petrol station

local roads

Figure 3: Highway bridge over a wide and deep valley.

The aim of the case studies is to provide background information for decisions concerning
protective measures against a blast attack. Key steps of each study can be described as
follows:

• three scenarios are considered – different amounts of an explosive charge transported
by a van, small lorry and lorry with a trailer,
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• several protective measures such as closure of the local roads providing access to the
bridges are identified and costs related to these measures are estimated,

• the probability of the attack, depending on the amount of the charge, is a study
parameter; it is assumed that this probability is provided by a relevant authority,
- given the attack, probability of a ‘successful’ attack is determined on the basis of
available data,

• given the successful attack, probabilistic analysis of the blast action and its effect
on a bridge is conducted considering effects of protective measures and consequently
the probability of bridge failure is determined,

• direct and follow-up (indirect)consequences of failure are estimated,

• risks for various alternatives of the attack and protective measures are analysed and
optimal solutions are provided considering different probabilities of the attack.

7 Discussion

Risk and cost-benefit considerations provide important insights into how security measures
should perform based on their effect on risk reduction and their total lifetime costs [24]. A
risk-averse attitude in which severe consequences are more weighed is commonly accepted
in decision-making [5]. Despite this, a risk-neutral attitude is suggested in this study to
obtain the most efficient option in terms of the expected life cycle cost.

Highway and road authorities and network managers may be more interested in the risks
of a whole network rather than to the risks of an individual bridge. In this case the
methodology proposed here should be extended similarly as proposed in [4].

8 Concluding remarks

Bridges in accidental situations represent the most vulnerable components of road net-
works. It is shown that decisions concerning selection of protective measures can be based
on the risk-based optimisation of the expected total costs. Actions to be considered in the
assessment may include normal and accidental (natural or manmade) loads and effects of
human errors. Potential protective measures should include restriction of physical access,
detection efforts, security planning and coordination, and construction modifications aim-
ing to improve structural robustness. It appears that the probabilistic cost optimisation
in conjunction with Bayesian networks provide an effective tool for decisions concerning
the selection of appropriate protective measures for bridges endangered by various types
of hazards.
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Abstract. This paper, focusing on how to determine design ground motions (DGMs)
on important structures that require dynamic response analyses to meet performance
requirements, proposes technically sound and practically reasonable procedures with close
linkage with the design point concept in a structural reliability theory. Several procedures,
some of them recently proposed by the author, are presented with numerical output results
and discussion are made from applications for performance-based framework of seismic
design.
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1 Introduction

Performance-based design has been highlighted in the last two decades in the field of
earthquake engineering [9]. Its great emphasis is placed not only on clear description
of required performances to structures, but also on quantification of their requirement
level. The design based on the performance requirements is understood as the limit state
design, which originates from Europe. Much effort for the theoretical development and
for implementation of the design method have been made in Europe and, eventually the
results are now reflected into the form of ISO documents and EUROCODE.

Therefore, the limit state design concept has been proposed so far and currently this
concept matches the same concept of the performance-based design ([5], [9]). In the
limit state design (LSD), design limit states are usually classified into the ultimate and
serviceability limit states, and the former is closely related to load bearing capacity and
ductility of buildings as a whole under extreme loading conditions rather than individual
structural members, while the latter focuses on functionality and inconvenience due to
building damage during normal use of buildings.

It then leads that the seismic design load or the magnitude of the design load for the
particular limit state should be different among all performance required in the design.
For example, in a seismic design, an appropriate level of the seismic design load should
be determined on the basis of performance requirement. In addition to the magnitude of
the seismic load, more relevant parameters specifying the detail seismic design load such
as the spectral content, the duration time of the ground motions, etc. are needed, all of
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which come from detailed information of earthquake sources. Ultimate description of the
seismic design load on structures is given in the form of time histories, so called design
ground motions (DGMs), which are effectively used for dynamic response analyses with
structural models.

In this context, it is presented in this paper how the DGMs can be determined for seismic
design of structures in the framework of the performance-based design, and that there
are historically several concept and methods to determine DGMs (time-histories) in a
probabilistic approach and demonstrated are the recent advancements made by the author.

2 Design Point Concept in Structural Reliability
Theory

2.1 Checking Point in Structural Reliability Theory

For a general limit state function, the first-order second-moment (FOSM) theory gives us
a checking point or a beta-point in a standard normal space, which is the shortest distance
of the approximated hyper-plane of the limit state function from the origin, or the point
of greatest probability density (or maximum likelihood point), as is seen in Fig.1 ([1]; [3];
[10]). Equivalently, the value of each variable corresponding to the checking point P can
be understood as the most adequate value for the limit state of interest for the specified
condition.

Figure 1: Concept of checking point

F=1/n 

Td 

PGV 

Conditional  
Probability 
P(Td>t|V≧vn)	 
 

Hazard Plane in PGV-DT	 

P 

Figure 2: Seismic hazard plane

2.2 Design Format based on Design Point

In a design situation, given a limit state function with random parameters to be deter-
mined under the condition of the specified reliability index βT or an allowable probability
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of failure Pfa, the design point P in the normal space gives a design format as in the
following LRFD (Load and Resistance Factor Design) format, which has been used in
north America, same as the partial safety factor format in Europe [5].

φRn ≥
∑

i

γiSni (1)

where φ, γi are resistance and load factors, respectively, which are function of βT and
statistical property of random variables involved, and Rn is a nominal resistance, Sni

is mostly the representative values of the load i. φRn and γiSni are so called, “design
resistance” and “design loads”. Therefore, the design load varies according to the required
reliability index and statistics of the random variables for the given limit state. The higher
βT provides the larger design load and the less design resistance.

It directly leads that the seismic design load to a structure must be directly linked to the
reliability requirement for a concerned limit state. Although the magnitude of seismic
design load is often given in terms of the return period value in the performance-based
earthquake engineering [9], the design load expressed by the product of the load factor
and the representative value of the load γiSni can easily be converted into the equivalent
return period value.

3 DGM for Seismic Design

To accurately characterize seismic GMs for dynamic response analyses of structures, it
is essential to adequately specify the following four basic properties of earthquake GMs;
their maximum amplitude, spectral content, duration time and temporal change of time
series. It is possible to generate synthesized design ground motions by properly taking into
account of the above basic properties. Although the current probabilistic seismic hazard
analysis (PSHA) has given a design basis in terms of seismic hazard map or curves, it can
estimate only scalar quantity of GMs such as PGA, PGV, spectral response, but cannot
produce any information that is needed to capture all the above basic properties of GMs.
Due to this methodological shortcoming of the PSHA, design ground motions cannot be
generated directly based on the results from the conventional PSHA [2].

It is a goal to evaluate all of those four basic properties simultaneously and reasonably
based on the results from the PSHA. In the first step, it is shown in the author’s paper
[11] that by focusing on both PGV and the duration time (DT) of future ground mo-
tions, the joint probability density function (JPDF) is formulated in the framework of
the probabilistic seismic hazard analysis. Figure 2 illustrates the seismic hazard plane in
PGV and DT, from which the two parameters are determined under the given exceedance
probability. Figure 3 shows examples of DGMs (acceleration time histories) for different
locations in Japan with return periods 75 and 250 years. Then, a method to carry out a
bi-variate PSHA that can simultaneously predict both PGV and DT is suggested in the
reference.
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Figure 3: Examples of generated GMs (Takada and Obuchi, 2005)

3.1 DGM based on Multi-variate PSHA

3.2 Concept of Controling Earthquakes based on Deaggregation
of PSHA Results

One of the most important issues in the seismic design of structures as well as in the
earthquake disaster mitigation policy-making is what kind of earthquakes have to be
taken into consideration. These selected earthquakes are called “Scenario earthquakes” or
“controlling earthquakes”, which are specified deterministically or probabilistically. How
large earthquakes should be adopted, of course, depends on the target risk level which
varies among structures with different importance.

For the selection of such earthquakes on probabilistic basis, it should not only take account
of likelihood of earthquake events, but also is based on quantitative measures. The PSHA
can estimate the probability distribution of the earthquake ground motion intensity not
earthquakes themselves, but the only disadvantage of this assessment was said to be that
it lacks of the concept of “earthquakes [6]”. To remedy this shortcomings, the procedures
to select the earthquakes corresponding to the specified risk or exceedance probability
have been developed, and these selected earthquakes are called “controlling earthquakes
([7]; [6])” or “hazard-consistent earthquakes [4]”. Both of the procedures are based on
deaggregation of a specified point on the seismic hazard curve, and these methods have
been fully adopted as a siting criterion in the US nuclear regulatory and Japanese practice
[13]. McGuire (1993) called this deaggregation process as “Closing loop”, which implies
that there is a definite linkage between the probabilistic ground motion intensity and
possible earthquakes thus selected.

Once the earthquakes are selected, which are characterized in terms of their source mag-
nitude and distance, more advanced up-to-date simulation techniques from their sources
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can be applied to them to accommodate more realistic earthquake information to be used
for seismic designs and earthquake disaster mitigation.

Herein, an earthquake magnitude M , a source distance R and a parameter representing
the uncertainty of a GM attenuation law ε are assumed to be random variables. Now, an
attenuation law, in general, takes the following form.

Y = Y (M,R, ε) (2)

where Y denotes the intensity of earthquake ground motion of a site, such as peak ground
acceleration (PGA), peak ground velocity (PGV) or spectral response, etc.

Since the point on the hazard curve consists the sum of statistical contribution of different
source magnitudes and distances, therefore, the point, inversely can be decomposed into
the contributions of each different source magnitudes and its distance. This decomposition
process is called “deaggregation” of the seismic hazard curve. Figure 4 shows schematic
diagram of how to determine magnitude, distance and epsilon, which appear in the limit
satate function associated with the GM intensity,

G(M,R, ε) = y − Y (M,R, ε) (3)

once the M,R, ε are determined, basic earthquake source information can be obtained,
from which GM time histories can be generated. The author’s paper studies several pos-
sible procedures for determination of these parameters based on the structural reliability
theory [12].

4 Recent Advancements of DGM based on PSHA

4.1 DGM Selction from SWI (Seismic Wave Inventory)

The great number of records have been accumulated in Japan after the 1995 Kobe earth-
quake at the observation network, which is called “K-NET”. The author proposes to di-
rectly use these observed records without processing the records for future ground motion
prediction. In the past, in order to achieve a new ground motion attenuation relation-
ship from the observed records, some intensity measures such as PGA, PGV or spectral
acceleration are of major concern, all of which are well known as not sufficiently effective
indicators to represent earthquake destructiveness. In this respect, the author proposed
a wave database, so called "seismic wave inventory (SWI)", in which all observed records
are tagged in terms of earthquake magnitudes, source-site distances, soil category, etc.,
as is seen in Fig. 5 [15].

The SWI can play the same role as the conventional ground motion attenuation laws
since all records have their attributes such as an earthquake magnitude, distance and
other attributes. In the reference [14], it is presented that a set of GMs corresponding to
a target return periods can be easily selected from the inventory. As numerical examples,
GMs with difference return periods are selected.
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Figure 4: LS function and JPDF

Ground motion database

Observed 
wave

Simulated
wave

User 
requirements

M : 6.1
X : 20km
Depth : 5km

PGA : 255cm/s2

PGV : 15cm/s
SI : 10cm/s
Sa : 100cm/s2

AVS30 : 450m/s

Seismic Wave Inventory

Attributes

M 7.0, X20km
Type : Crustal

Selected waves

Figure 5: Concept of Seismic Wave Inven-
tory

Figures 6 and 7 show selected GMs with the return periods 500 and 5000 years, which
are determined from the PGV hazard curve of the PSHA. Selected GMs are two types;
actually observed records in black waves and the ones simulated based on physical fault
models in gray. Several types of earthquakes with different magnitudes and distances are
selected, all of which, however, produce the same amount of PGV at a site of interest. In
Fig. 7, only simulated waves are selected since there are no such observed records with
high PGV of 55 kines. Figures 8 and 9 show the contribution of selected earthquakes in a
M-R plane. It can be seen that near-field earthquakes with higher magnitudes have much
contribution to the amount of PGV.

4.2 DGM based on Physics-based simulations

Here, the author proposes a methodology to generate a set of ground motions that are
consistent with the seismic hazard of the target site since there has been theoretical
development of physics-based simulation technique in the last two decades (Boore et al.
(1983), Kamae et al. (1991), Irikura et al. (1997)). A set of generated GMs are expected
to be used for safety assessment and seismic design of important structures such as nuclear
power plants.

For generating GMs, several fault models containing stochastic parameters of seismic
sources characteristics are set in each group of seismic sources that are divided by region,
magnitude, and distance [8]. In the following Monte Carlo Simulation, the GMs are
repeatedly generated one by one for each fault where realization values for stochastic
parameters are given in the way that realization values are randomly set according to the
corresponding distribution of stochastic parameters, under the constraint that PGA of
the generated GMs fall within the specified range, e.g., from 700 to 1100 gals in this case.
Figure 10 shows the generated GMs from different earthquake categories, whose PGA are
within the same range.
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Figure 8: Contribution of earthquakes
(TR=500yrs)

10
30

50
70

90

5.1
5.7

6.3
6.9

0

5

10

15

20

25

30

Mj

(km )

C
o
nt
rib

ut
io
n	  
ra
te
	  (
%
)

5000year

Figure 9: Contribution of earthquakes
(TR=5000yrs)
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Figure 10: Examples of generated GMs based on physics-based fault models

5 Conclusions and Future Research Subjects

The DGMs used for dynamic response analyses of important structures should be directly
linked with performance requirements. The performance requirements imply the perfor-
mance category required and its quantitative basis for a particular structure. This paper
presents the determination procedures of DGMs with the concept of the design point in a
structural reliability theory and demonstrates the recent advancements made by the au-
thor. The proposed procedure needs further improvement in order to reflect more realistic
features of GMs in the framework of performance-based earthquake engineering.
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Abstract.

With the use of high and ultra-high strength materials reinforced concrete columns in
building structures are being more and more slender. Material properties and geometric
parameters are significant sensitive to load bearing capacity of the columns. This paper
presents a numerical stochastic analysis of slender reinforced concrete columns. An
effective method for considering the random field of reinforced concrete column, which
based on response surface method, is applied. Spatial variability of material is taken into
account. Hereby the tensile strength, compression strength and elastic modulus of con-
crete are special interested due to their large deviations. A parameter study is conducted
to point out the critical regions of structural reliability for the reinforced concrete columns.

Keywords: reinforced concrete columns, spatial variability, random field, response
surface method.

1 Introduction

The success of developing ultrahigh-performance concrete (UHPC) in the early 1990s
allows an extension of application field of reinforced concrete constructions. Meanwhile
concrete technological developments have allowed production of UHPC with a compressive
strength of more than 150N/mm2. Consequently, the cross-sectional dimensions required
for highly stressed compression members can be reduced. This positive development
increased the trend to even more slender and but likelier also to buckle structural systems.
Under certain conditions, it is to be expected that the safety level of such construction
elements decreases. A detailed stochastic modelling as well as a full probabilistic analysis
can give the answer for this problem.

In the view of structural analysis, concrete properties show a large randomness and spatial
variability in structure, especially by fibre concrete. By using assumption of homogenous
material properties without considering their spatial variability the failure positions of
structural members are fixed. For a pinned-column under eccentric compression load a
failure is located at the middle of the column, where the maximal moment is always found.
Experimental results showed that real columns have failures in range of 1

3
length of the

column at the middle [5], meaning that the simple assumption cannot reflect fully the true
behaviour of the structure. To overcome the drawback of this assumption, it is necessary
to consider the randomness and spatial variability of structural properties in reliability
analysis. In this case, the concrete properties are especially interested.
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In this paper, a reliability analysis of high strength and ultra-high performance fibre rein-
forced concrete columns under eccentric load is presented, in which the spatial variability
of concrete properties are taken into account. The influence of the spatial variability of
the concrete properties on structural reliability is analysed. A comparison with the use
of homogeneous material hypotheses is also presented.

2 Experimental tests on slender columns

2.1 General

Accompanying the numerical calculations, experimental tests were carried out on slen-
der columns. Determining load bearing capacity of the columns, randomness and spatial
variability of concrete properties is the goal of these tests. To test columns with a high
ratio slenderness ratio (λ ≥ 80) the cross-sectional dimensions have to be relatively small
(h/b/l = 12cm/12cm/278cm) due to the capacity of the laboratory’s mechanical equip-
ment. The columns are loaded in a position-controlled component test by a hydraulic
cylinder. During the test, deflections and compressions of reinforcement, concrete and
structural system are measured with strain gauges and displacement sensors at more than
20 measuring points. In addition to these tests, investigations on compressive strength,
flexural strength and modulus of elasticity of UHPC were carried out. The correlation
and spatial variability of concrete properties are also studied. To determine the influence
of geometry on the spatial variability of material properties, reinforced concrete columns
with different cross-sectional dimensions and cross-sectional forms are investigated.

2.2 Test results

In order to adequately estimate the model uncertainties, the number of samples should be
maximized. Because of this, more than 10 columns were tested at TU Darmstadt. Figure
1 illustrates a slender column in different loading states of 300, 518 and 330 kN as well
as the force-deflection-relationship of the experimental test.

Figure 2 illustrates the axial force of the hydraulic cylinder dependent on axial compression
of the column for NSC and UHPC. It is clear that the maximum axial force of the UHPC
column is higher than that of the same column type made of NSC. Much more interesting
is that, also in the case of fibre-reinforced UHPC, system behaviour can be characterized as
brittle. Hence, the nearly linear trend of the axial force-compression-relationship confirms
the doubts about an increasing risk of failure due to less ductile system behaviour. More
detailed results of the load bearing tests can be found in [5].

At the moment, the study of spatial variability of concrete properties is being carried out
at the institute of concrete and masonry, TU Darmstadt. After taking concrete samples
out from the reinforced concrete columns by boring, the samples are tested to determine
their mechanical properties. By UHPRC columns, the fibre distribution and orientation
are also analysed by using the computer-tomography and optical analysis measurement
methods.
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Figure 1: Slender UHPC column in different loading states

Figure 2: Behaviour of NSC and UHPC column
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3 Structural Modelling and Analysis

For analysis of the reinforced concrete columns, a combined method which was developed
in [9] is used. In this method, the structure system is divided into a finite number of beam
elements. Because the sectional stiffness of each element generally depends on the load
state, this stiffness is not constant at every position of element. To determine exactly
the relationship between load and displacement, the beam element is divided into some
small segments and the transfer matrix method is used for calculating. Each segment has
equal cross-section stiffness and this stiffness is determined by using a section calculation
algorithm, which is based on stress integration. To create stiffness matrix and load vector
of elements, the dis- placement method is used in combination with the transfer matrix
method. The computation of the whole structure system is carried out with the use of
the Newton-Raphson method and tangent stiffness matrixes (see Fig. 3). The method
considers also the nonlinear geometry effect of the structure. Nonlinear material analysis
is carried out in process of calculating section. This analysis is based on the predefined
realistic stress-strain curves of concrete and steel, which has already been integrated in
some structural codes, such as CEB-FIP, Eurocode 2. Effects of softening, cracking of
concrete are also considered following Quast’s approach [8]. The calculation method was
implemented in the program STAB3D, which is specially designed for analysis of reinforced
concrete columns.

Displacement Method

Transfer Matrix Method

Stress Integration

Finite Element Method

Figure 3: Combined method

To take into account the spatial variability of concrete properties, generated random prop-
erties are set to all structural sections. Hereby only the variability in the long direction
of the column is considered. On cross section, concrete properties are assumed to be
constant.

4 Probabilistic Modelling

4.1 Random variables

Based on the results of experimental tests which was already reported in [5] and sugges-
tions according to the Probabilistic Model Code [9], a summary of the investigated basic
variables is given in Table 1 for both normal concrete and UHPC. To determine the design
load, the nonlinear analysis method according to Eurocode 2 is applied. The global factor
of resistance γR = 1.3 is used.
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Properties Var. Expression Type Unit µXi σXi VXi
Concrete EC2
compression strength fc fck + 8 LN N/mm2 - 5,0 -
tensile strength fct αct · (fc − 8)2/3 for fc ≤ 58 N/mm2 - - -

2, 12 · ln(1 + fc/10 for fc > 58
tensile strength factor αct determined LN - 0,30 - 0,30
elastic modulus Ec 22000 · ln(1 + fc/10)

0,3 LN N/mm2 - - 0,15
Concrete M2Q
compression strength fc fck · (1 + 0, 06 · 1, 645) LN N/mm2 164,8 - 0,06
tensile strength fct αct · f 2/3

c
N/mm2 13,5 2,0 -

tensile strength factor αct determined LN - 0,45 - 0,15
elastic modulus Ec αEc · f 1/3

e
N/mm2 51260 2510 -

elastic modulus factor αEc determined LN - 9350 - 0,10
Reinforcement
yield strength fy 1, 1 · fyk LN N/mm2 550 33 0,06
ultimate yield strength fu 1, 05 · fy N/mm2 578 - -
elastic modulus Es determined D N/mm2 200000 - -
Geometry
length l - D m - - -
width b - N m bm 0,005 -
height h - N m hm 0,005 -
concrete cover thickness c - N m cnom 0,005 -
steel diameter ds - N m dsm - 0,02
eccentricity e - D m - - -
Load
dead load G Gm = Gm = Rd

γG+Qk/Gk·γQ N kN - 0,10
live load Q Qm = Rd−Gk·γG

1,746·γQ Gumbel kN - 0,40
Model uncertainty θ determined LN - 1,0 - 0,10

Table 1: Parameters of basic variables

Although model uncertainty was determined and reported in [5] with mean value 1.0 and
variance coefficient 0.07 by using the calculation program STAB3D for column analysis,
in this study, the variance coefficient with value 0.10 of the model uncertainty was taken
according to [7].

4.2 Random fields

Randomness and spatial variability of structural properties is a natural phenomenon,
which have a big influence on structural behaviour and should be taken into account in
reliability analysis of the structure. For reinforced concrete columns, the elastic modulus
and tensile strength of concrete are very sensitive to the load bearing capacity, especially
when fibers are used in concrete. In the model, the strength random field is homogeneous
and isotropic. That means the local distribution is identical in all points of the structure.
The following correlation function is used in this study:

ρUU(x1, x2) = e−(
x1−x2

L
)2 (1)

where L is the correlation length. If L = 0 the properties are not correlated (ρUU(x1, x2) =
0) and when L tends to infinity the correlation is perfect (ρUU(x1, x2) = 1). In the case
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of very large L, the random field is reduced to random variable. According to [4] the
correlation length is about 1 m for plan structural members and 5 m for columns. In [3]
the correlation length for reinforced concrete column is L = 6hm, with hm representing
the mean height of the column cross section. In this paper the correlation length L = 3m
is chosen for all studied concrete properties.

On the other hand, the concrete properties are correlated each other. For modelling the
random variables, a correlation matrix for concrete materials in reference to [2] is adopted.
Hereby only the tensile strength and the elastic modulus are uncorrelated (see Tab.1).

fc fct Ec
fc 1 0.4 0.3
fct 0.4 1 0
Ec 0.3 0 1

Table 2: Correlation matrix of concrete materials [2]

In this study, the reinforced concrete column is divided into 30 segments as well as 31
sections. Each segment has 3 basic variables describing concrete properties: compression
strength, tensile strength and elastic modulus. The number of basic variables describing
concrete properties for whole column is 93. The concrete properties are correlated on
section and along the column. To generate the random values, all correlated random vari-
ables can be converted to uncorrelated random variables using eigenvalue decomposition
of the covariance matrix. For convenience in calculation, random variables are normalized
with zero mean value. The covariance matrix CXX can be expressed though eigenvectors
matrix ψ and eigenvalue matrix λ as follows:

CXX = ψ · diag{λi} · ψT (2)

Therefore, standard random variables X0 are calculated through uncorrelated random
variable Y using following transformation:

X = ψ · Y (3)

Here, the independent random variables Y have Gauss distribution. The associated stan-
dard deviations are calculated from the eigenvalues.

Yi ∼ N(0;
√
λi) (4)

By strong correlation only some random variables Y with large standard deviations can
describe very well the random variables X. In this case, we can significantly reduce num-
ber of required random variables Y. As a result, calculation time for probabilistic analysis
is also reduced.

In general, for basic variables with non-Gaussian distributions a Nataf-model proposed by
Liu and Der Kiureghian [6] for transforming non-Gaussian multivariate distribution into
standardized Gaussian distribution can be used. In this study, the concrete properties
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have lognormal distribution. A simple transformation from lognormal distribution to
normal distribution is expressed as follows:

X0i =
lnXi − lnµi

si
=

1

si
ln

(
Xi

µi

)
(5)

Here are µ = ln
(
X/
√
1 + v 2

x

)
and s =

√
ln(1 + v 2

x
) with mean value X and covariance

vx.

According to [1], by positive correlation coefficient and especially with covariance co-
efficient up to 0.4 there is only a very small difference between original and adjusted
correlation of two correlated log-normal variables using the Nataf model. This is also
confirmed by Vorechovský in [10]. Hence, in this study the original covariance matrix
CXX is used also for transformed values.

5 Reliability analysis

5.1 Analysis methods

Performing a reliability analysis of high-dimensional nonlinear problems with implicit re-
sponse functions is always a big challenge. If the analysis of each sample requires much
computation time, numerical methods such as Crude Monte Carlo Simulation (CMCS),
adaptive importance sampling (AIS) maybe not effective enough and in many cases is not
feasible. Response surface method (RSM) overcomes the disadvantages of these methods.
The main idea of RSM is approximating the limit state surface of studied structure,
namely response surface, to convert the implicit problems into problems with explicit
response function, which can be easily solved by popular methods. In this paper load
bearing capacity presenting limit state surface of the structure is polynomial approximated
as following:

R(x) = a0 +
n∑

i=1

bi ·
(
xi − x∗

i

k · σi

)
+

n∑

i=1

ci ·
(
xi − x∗

i

k · σi

)2

(6)

Here are n number of variables related to resistance of structure,

x(x1, x2, ..., xn) any point of response surface, also vector of variables,

x∗(x∗
1
, x∗

2
, ..., x ∗

n
) referent point, also design point when adaption of RS is used,

σi standard deviation of variable i,

k factor controlling the study range, can be set with value of 3. If an adaption of
response surface is used, this factor should be changed to 1 for local analysis.
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a0, bi, ci, i = 1..n constants,can be easily determined by solving (2n + 1) equations
with selection

(
xi−x ∗

i

k·σi = 0
)
and

(
xi−x ∗

i

k·σi = 0
)
.

Algorithm of RSM with the polynomial approximation presented above was implemented
in the probabilistic analysis program ANNA, which was also developed by author. The
program ANNA is coupled with the structural analysis program STAB3D to perform
reliability analysis for reinforced concrete frame structures.

5.2 Results

5.2.1 Comparison of RSM and AIS method

To illustrate the effective of the response surface method, a reinforced concrete column
with cross section 40 cm x 40 cm and slenderness of 80 made of concrete C100/115 under
eccentric load was studied. The column is analysed in some cases of reinforcement ratios
and eccentricities to consider different nonlinearity situations. The reliability analysis was
carried out using RSM as well as the AIS method as a reference.

Reinf.Ratio ρs = 1.0% ρs = 2.0%
Eccentricity e/h = 0.1 e/h = 2.0 e/h = 0.1 e/h = 2.0
Nd(kN) 4303 146.4 6393 383.1
Method AIS RSM AIS RSM AIS RSM AIS RSM
p 4.7× 10−4 4.9× 10−4 1.3× 10−6 1.6× 10−6 5.8× 10−4 5.6× 10−4 2.0× 10−5 2.4× 10−5

β 3.305 3.296 4.703 4.654 3.249 3.258 4.110 4.064
nSim 15000 21 15000 21 15000 21 15000 21
Tcal(sec) 436 9 507 7 486 9 479 6
Note : Tcal(CrudeMonte− CarloSimulationwith2.0× 1010samples, approximated) ≈ 21years
Computer used for all analysis: Processor Intel R©Core i7-2600 CPU @ 3.4GHz, 8GB RAM

Table 3: Comparison of numerical analysis results

By controlling of maximal static error fewer than 10% the analysis shows that there is
a very small difference in calculation results between two calculation methods (see Tab.
3). Requiring only few structural simulations, which are used for finding the limit state
of structure, the response surface method gives a very efficient performance on reliability
analysis. At same quality of analysis results, the calculation time required in case of using
RSM is reduced about 50 times when compared with AIS method. It is also seen that the
chosen polynomial approximation reflects very well the limit state surface of reinforced
concrete columns. In this case, no adaptation of response surface is required.

This result shows the computational efficiency of the response surface method in reliability
analysis of reinforced concrete columns. In the next calculations only analysis results with
the use of RSM are presented.

5.2.2 Failure zone of columns

As described in the chapter 1, due to the spatial variability of concrete properties the
failure position is not fixed at the middle of column. To illustrate the failure zone, a rein-
forced concrete column under eccentric compression load was analysed. In this example,
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only concrete tensile strength was considered for random field. Monte Carlo method was
used to capture possible positions of failures. Two values of correlation length (L = 0 and
L = 1m) are used to investigate its influence on failure position of the reinforced concrete
col- umn. In case of zero correlation length, the failure zone dominates on about half of
the column length. The failure zone is significant shortened by the correlation length L
= 1m.

Figure 4: Failure probability of sections along the column

5.2.3 Reliability of columns

Fib. 5 shows results of reliability analysis of two columns made of HSC and UHPC with
slenderness ratio 80. The analysis is carried out for two cases of consideration: with
and without random field. In general, calculated safety index is small by small relative
eccentricity and increases to the maximal value at the eccentricity of about 0,5h. From
this point, the safety index is relative unchanged independent on the eccentricity (see
Fig. 5). The reason for that is by small eccentricity the scattering of resistance is large.
Column collapses due to concrete failure in compression and due to buckling. With larger
scattering than that of concrete strength, the elasticity modulus has a very large influence
on the reliability of the column (see Fig. 6a). By large eccentricity where a bending failure
is dominated, only tensile strength of concrete has big sensitivity factor on the resistance
side (see Fig. 6b).

For HSC columns, the considering of random field gives a significant larger calculated ?-
value than in the simplified case (see Fig. 5a), while by UHPC columns both results are
nearly the same (see Fig. 5b). This is resulted from the different scattering of HSC and
UHPC parameters. In this study, the elastic modulus of normal concrete hat a variance co-
efficient of 0.15 while by UHPC (M2Q) this value is only 0.10. This means, by small vari-
ability of material properties, the influence of random filed on the structural reliability
can be neglected.
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Figure 5: Reliability of columns depending on eccentricity of load

Figure 6: Sensitivity factors by HSC column made of C100/115
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6 Conclusions

A probabilistic modelling and reliability analysis of load bearing capacity of concrete
columns made of high strength concrete and ultra-high strength concrete were presented.
In this study, the random fields of concrete properties were especially considered. Not only
spatial correla- tions of each random field but also the cross correlations among random
variables were taken into account. Concrete properties were modelled as homogeneous
Gaussian random fields. The nonlinear structural analysis was carried out by using finite
frame elements with nonlinear ma- terial model for concrete and consideration of theory
2th order for the whole column.

The Monte Carlo method was employed to obtain failure probability distribution of col-
umn along its length. For reliability analysis of reinforced concrete columns different
methods in- cluding the importance sampling method and the response surface method
were used. Ob- tained results were compared to show the efficiencies of the analysis
methods. Although a simple function was used to describe structural response surface,
the response surface method shows in this case of reinforced concrete columns the most
calculation efficiency.

Comparison results of full and simplified reliability analyses of column made of HSC and
UHPC have shown that the spatial variations of concrete properties should be taken into
ac- count to get a realistic estimation of structural reliability. If quality of concrete is well
con- trolled, such as in the case of UHPC, the influence of spatial variation on reliability
of columns is reduced. In this case, a simplified reliability analysis could be used.

Additionally, the correlation length has also a significant effect on reliability of the
columns. Due to lacking of experimental results, the analysis in this study was car-
ried out with an as- sumption of L = 3m. In the next step, a full reliability analysis of
UHPC columns using exper- imental results of spatial variation of UHPC properties is
carried out. Based on the obtained results, further suggestions for design can be made.
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Abstract. The implications of performance based design for structural fire safety are
investigated by comparing the reliability of concrete slabs exposed to both standard fires
and natural fires. Through this comparison an equivalent standard fire duration is defined,
which is found to be more severe than the equivalency rules given in Eurocode.

1 Introduction

Two opposing trends have been observed with respect to structural fire safety. On the
one hand large disasters and fire accidents have been strengthening the perception that
structural fire safety is important, while on the other hand deviations from severe standard
fire curves towards less severe natural fires have been promoted by the increasingly popular
concept of performance based design.

In the performance based design concept, design solutions are deemed acceptable when
performance requirements are met. Defining these requirements is however very difficult
and therefore equivalency with the old prescriptive designs is often a requirement in
countries which have not yet adopted a fully performance based approach. For structural
fire safety this implies a safety level during exposure to natural fires which is at least
as high as the safety level during exposure to the standard fire curve of the prescriptive
design concept. This does however introduce many practical difficulties as the safety level
obtained with the prescriptive rules is not explicitly known and reliability calculations can
be both too time-consuming and too complex for applications by practitioners. Therefore,
the reliability during exposure to both standard and natural fires has to be assessed and
a method for equivalency has to be developed. This equivalency should allow to relate a
natural fire to a standard fire duration, while meeting the criterion of equivalent safety. As
a first step the applicability of the equivalency formula given in the Eurocode is evaluated.

2 Fire curves according to the Eurocode and the
equivalent standard fire concept

For the European Union, the ISO 834 fire is the standard fire curve applied in prescrip-
tive design rules for structural fire safety [2]. However, EN 1991-1-2 also provides a
temperature-time curve for natural fires in Annex A, and even an equivalency formula
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relating natural fires to an equivalent ISO 834 standard fire duration in Annex F. The
natural fire curve is a function of the fire load density q representing the total energy
which can be released by combustion, the opening factor O representing the amount of
ventilation, and the geometry of the compartment. The ISO 834 standard fire and a num-
ber of natural fires are visualized in Figure 1, and in Figure 2 the equivalent standard fire
duration according to the Eurocode formula of Annex F is visualized. For both graphs
and in the following sections a square room was assumed, since this is the most severe
situation for a given floor area Af , and concrete thermal properties were used.

Figure 1: ISO 834 standard fire and EN 1991-1-2 natural fire curve for different q and O
(Af = 400m2, H = 3m).

The fire curves in Figure 1 indicate how for a ventilation controlled fire an increase in
the opening factor O results in a faster and higher fire growth, but also in an earlier
start of the cooling phase. This effect of increasing O is valid until the fire becomes fuel
controlled. Once the fire is fuel controlled, O only governs the steepness of the decay
phase. The fire load density q on the other hand positively influences the peak of the
fire curve. Furthermore, the ratio of q to O governs whether the fire is fuel or ventilation
controlled through a linear limit criterion [2].

For a given room height H and averaged opening height heq the equivalency curves in
Figure 2 shift only a little when changing the compartment area Af (except for very small
compartments < 100m2). As tISO,eq is a linear function of the fire load density, linear
interpolation can be used to find tISO,eq for intermediate values of q.

The equivalent standard fire allows to apply known test results for standard fire situations
to a wide range of natural fires and to determine which construction products can be
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Figure 2: Equivalent ISO 834 standard fire duration tISO,eq according to EN 1991-1-2, as
a function of q and O (Af = 400m2, H = 3m, heq = 1.7m).

applied in the design given their structural fire resistance classification (R-value) which
relates to the standard fire. As such it is a very practical concept. However, it is a priori
unclear whether the Eurocode formula is conservative from the perspective of structural
safety.

3 Reliability of concrete slabs exposed to natural fires
and reliability-based equivalent standard fire
duration

As mentioned earlier, an equivalent solution should provide at least the same safety level
as provided through the prescriptive rules. Therefore, the reliability of concrete slabs
exposed to both the standard fire and natural fires is investigated using the calculation
concepts described in [6] and using a mixed-lognormal approximation for the bending
moment capacity, as derived in [5]. The investigated slab configuration is given in Table 1.

The characteristic values of the bending moment induced by the permanent load and
the imposed load (i.e. MGk and MQk) are defined through equations 1 and 2. This
calculation concept allows to evaluate the reliability of individual structural elements,
without requiring additional assumptions with respect to the current and future use of
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Property Symbol Distribution µ σ

concrete compressive strength
at 20◦C [MPa] (fck = 42MPa)

fc, 20 Lognormal 60 9

reinforcement yield stress at
20◦C [MPa] (fyk = 500MPa)

fy, 20 Lognormal 581.4 40.7

slab thickness [mm] h Deterministic 200 -
slab unit width [mm] b Deterministic 1000 -
horizontal reinforcement axis
distance [mm]

s Deterministic 100 -

concrete cover [mm] c Beta 35 5
reinforcement area [mm2] As Normal As,nom 0.02As,nom

bending moment induced by
the permanent load [kNm]

MG Normal MGk 0.1MGk

bending moment induced by
the imposed load [kNm]

MQ Gumbel
(5-year refer-
ence period)

0.2MQ 0.22MQk

model uncertainty for the resis-
tance effect [-]

KR Lognormal 1.1 0.11

model uncertainty for the load
effect [-]

KE Lognormal 1.0 0.10

Table 1: Characteristics of the example slab configuration: property description, symbol,
stochastic distribution, mean value µ and standard deviation σ.

the structure.
χ =

qk
qk + gk

=
MQk

MQk +MGk

(1)

MGk =
MRd

max

{(
γG + ψ0γQ

χ

1− χ

)
;

(
ξγG + γQ

χ

1− χ

)} (2)

with χ the load ratio, gk the characteristic value of the permanent load effect, qk the
characteristic value of the imposed load effect, MGk the bending moment induced by the
characteristic value of the permanent load, MQk the bending moment induced by the
characteristic value of the variable load, γG the partial factor for the permanent load, ξ a
reduction factor for unfavourable permanent loads, γQ the partial factor for the variable
load, and ψ0 a combination factor.

The reliability index during fire βfi,t is calculated by a FORM analysis for the limit state
function 3, for a load ratio χ of 0.5 and the stochastic models of Table 1, with MR,fi,t

the bending moment capacity during fire, as derived in [5]. Equation 2 is evaluated with
γG = 1.35, γQ = 1.5 and ψ0 = 0.7 (i.e. for residential areas, office areas, congregation
areas shopping areas and traffic areas, [1]). Results for different combinations of O and q
are visualized in Figure 3 and Figure 4 for Af = 400m2 and H = 3m.

Z = KRMR,fi,t −KE(MG +MQ) (3)
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Figure 3: Reliability βfi,t for the concrete slab of Table 1 exposed to the ISO 834 standard
fire curve and the EN 1991-1-2 parametric fire curve (q = 1400MJ/m2, O every
0.02m1/2 from 0.02 to 0.20m1/2).

In both Figure 3 and Figure 4, an alternative result for the combination q = 1400MJ/m2

and O = 0.04m1/2 is visualized which rises again after approximately 200 minutes. This
alternative represents the reliability obtained when considering recovery of the reinforce-
ment strength properties in the cooling phase. Although a strength recovery after fire
exposure has been described in literature [4], it is reasonable to assume that this strength
recovery is not instantaneous. More importantly, if immediate strength recovery is taken
into account, the minimum value of βfi,t will be overestimated due to the stochastic nature
of amongst others the concrete cover.

The obtained minimum value of the reliability index is further denoted as βmin, and defines
a reliability-based equivalent ISO 834 standard fire duration as the time of exposure to
the ISO fire for which the same reliability is found, i.e. βmin is projected on the reliability
curve associated with exposure to the ISO 834 fire. These projections are visualized in
Figure 3 and Figure 4 by the diamond-shaped dots and define an equivalent standard fire
duration tISO,eq through a second projection on the (horizontal) time axis. An overview
of the results is given in Figure 5.

4 Comparison with Eurocode equivalency formula

As visualized above in Figure 2, EN 1992-1-2 gives a deterministic formula to relate an
equivalent ISO 834 fire duration to a given parametric fire. The equivalent standard fire
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Figure 4: Reliability βfi,t for the concrete slab of Table 1 exposed to the ISO 834 standard
fire curve and the EN 1991-1-2 parametric fire curve (q = every 200MJ/m2 from
200 to 1800MJ/m2, O = 0.04m1/2).

duration tISO,eq according to EN 1991-1-2 (Figure 2) is found to be non-conservative for
most combinations of q and O, as visualized in Figure 6 for a limited dataset. Only when
both the opening factor O is small and the fire load q is large, the Eurocode formula can
be considered conservative.

5 Influence of a larger standard deviation for the
concrete cover

While the equivalency formula of EN 1991-1-2 is deterministic, the reliability-based ap-
proach is capable to take into account the effect of increased or reduced uncertainty with
respect to the basic variables. As the influence of the standard deviation σc of the concrete
cover has been stressed for example in [6], its effect on tISO,eq is investigated.

If a larger standard deviation of the concrete cover is for example witnessed in an existing
structure, this larger σc should be taken into account when determining the reliability
βfi,t during exposure to the parametric fire curve. However, it can be a priori less obvious
whether this larger standard deviation of the concrete cover should also be considered
when determining the reference curve for exposure to the ISO 834 standard fire curve. If
the larger σc is considered for the reference curve as well, both will give lower reliabili-
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Figure 5: Reliability-based equivalent ISO 834 standard fire duration tISO,eq, as a function
of q and O (Af = 400m2, H = 3m, heq = 1.7m, slab characteristics as given in
Table 1).

ties, and therefore the ISO 834 fire duration tISO,eq for which βmin is obtained will not
differ much from the result in case of a common standard deviation σc. If this tISO,eq

is subsequently used to prove that the slab has adequate fire resistance considering the
tabulated requirements in EN 1992-1-2 [3] for the nominal concrete cover (mean value), a
lower reliability will be accepted than (implicitly) foreseen by the Eurocode (considering a
common value for σc). In this case the reference curve should therefore be calculated with
common uncertainties for the basic variables. However, if the increased uncertainty for
the concrete cover would be incorporated in a second phase, for example by provisions in
the Eurocode related to the ISO 834 standard fire, the increased concrete cover standard
deviation should be considered for the reference reliability curve as well.

As no guidelines with respect to the standard deviation of the concrete cover are given
in EN 1992-1-2, the first option is chosen in which the reference ISO 834 reliability is
determined for a standard slab (with standard probability density functions for the basic
parameters and associated common value for σc). These considerations are important as
the increased σc results in a lower reliability (see [6]), which should be taken into account
in a performance based calculation, for example by a larger tISO,eq as determined in Figure
7 for the slab configuration of Table 1 where σc = 10mm.

As can be expected, Figure 7 indicates that the Eurocode equivalency formula is clearly
not conservative in case of an increased standard deviation of the concrete cover. Conse-
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Figure 6: Comparison of tISO,eq according to EN 1991-1-2, and according to the concept
of equivalent reliability (for the results of Figure 5).

quently, it is in this situation not acceptable to use the Eurocode equivalency formula to
determine the tISO,eq to be applied in conjunction with the tabulated data of EN 1992-
1-2 [3] to determine the required nominal concrete cover. However, no results have been
determined for smaller fire load densities as the configuration with σc = 10mm has a
slightly smaller reliability at the start of the fire than when σc = 5mm. Consequently,
for less severe fires, this small deviation affects the results. For more severe fires, the
reliability-based approach as described above can be applied.

6 Conclusions

The reliability of concrete slabs exposed to fire is evaluated for both the ISO 834 stan-
dard fire and the parametric fire curves of EN 1991-1-2. Applying a criterion of equal
performance in terms of reliability index, the minimum reliability obtained during ex-
posure to a parametric fire is unambiguously related to an equivalent ISO 834 standard
fire duration. These equivalent fire durations are used to evaluate the equivalency rule
given in EN 1991-1-2. The Eurocode equivalency is found to be non-conservative, except
when both small opening factors and large fire load densities occur together. The non-
conservative nature of the Eurocode equivalency formula is even more pronounced in case
of an increased standard deviation of the concrete cover.
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Figure 7: Comparison of tISO,eq according to EN 1991-1-2, and according to the concept
of equivalent reliability (σc = 10mm for βfi,t of the parametric fire).
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Abstract. The South African National Standard for the structural use of cold-formed
steel [9] provides design provisions for screwed connections. Through reliability analyses,
including assessment of the model factor through experimental work, the reliability of
such connections in tilt-and bearing is established. Model factors with mean values close
to one and small standard deviations confirm the adequacy of the prediction model. High
reliability index values confirm a conservative design formulation across a range of plate
thicknesses and –strengths.

1 Introduction

The South African (SA) housing industry has, for many years, primarily been dealing
with masonry and timber as the go-to building materials for wall- and roof construction
respectively. In 2006, light, thin and economical Cold-Formed Steel (CFS) was introduced
to the SA market as an alternative. Shaped and formed at ambient temperature, CFS
members originate from flat steel sheets. Used in the primary and secondary framing of
walls, floors and roofing systems, the method of connecting two or more CFS members
depends on the connection purpose. Where bolts are generally used for anchorage and
bolting to thicker members with a high load demand, screws are used for a lower load
demand and thinner members [1].

The first specification for the design of light gage steel structural members was published
by the AISI, already in the 1940’s. It was updated regularly and the 1968 edition of
the American Specifications formed the basis for the first Australian standard (AS 1538)
in 1974. The South-African national standard for the structural use of CFS structures
[9] was in turn adopted from the AZ/NZS 4600:2500 with various national modifications
made regarding the geometry and material properties of CFS members [4]. SANS 10162-2
provides capacity prediction models for screwed connections which are designed against
shear failure of the screw(s), section tear-out, net section failure and tilt-and-bearing
failure ([1]; [3]).

2 Connections in tilt-and bearing

Previous studies [7] showed that, when connecting relatively thin members, connection
capacity is typically determined by the tilt-and-bearing type failure mode. This failure
mode is caused by the extreme thinness of the connected members that induces an ec-
centric shear load on the screw, causing it to tilt. Equation 1 gives the nominal capacity
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for screwed connections with equally thick members expected to fail in screw tilting and
hole bearing, with tilting the dominant contributor towards failure, according to SANS
10162-2. The design capacity Vd is obtained by multiplying the nominal capacity Vb by a
capacity reduction factor of φ = 0.5.

Vb = 4.2
√
t3dffu (1)

where t is the thickness of the connected members, df the nominal screw diameter and
fu the ultimate tensile strength of the connected members.

3 Reliability

3.1 Background

The reliability theory is typically used to assess the adequacy of structural performance
by accounting for variability and/or uncertainties in the parameters that influence per-
formance in order to quantify its probability of failure. Probabilistic design methods
are based on the condition that the reliability index of a structure β should exceed the
specified target reliability βt. The reliability index β is directly related to the proba-
bility of failure and is defined as the negative value of a standardised random variable
corresponding to the probability of failure, i.e.β = −Φ−1

N (pf ).

If structural failure can be defined as a structure not being able to resist the applied
actions, the performance function or limit state can be expressed as G = R − E, where
the resistance R and load E is considered as random variables and failure is assumed to
occur when E > R, i.e. when G < 0 [5]. The probability of failure pf = p(G < 0) may be
assessed using reliability methods such as the First Order Reliability Method (FORM).

Variability of parameters that influence performance may be due to natural randomness
of materials and loads or to uncertainty, including uncertainty contained in prediction
models due to simplifications, unclear definitions or inadequate formulations. Such model
uncertainties [6] may be quantified by comparisons with other more involved models that
represent a closer representation of reality or (preferably) by comparison with collected
data from experimental work.

EN 1990 allows for separate consideration of resistance reliability and that of load ef-
fect. To this end sensitivity factors αR and αE are provided to quantify their respective
contributions to overall reliability, so that the target resistance reliability index becomes
βt,R = αRβt = 0, 8βt.

3.2 Formulation for tilt-and bearing resistance

Considering only the provisions for resistance, the structure is assumed safe if the actual
connection capacity Vactual exceed the design capacity. The performance function is thus
defined as

G = Vactual − Vd (2)
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The design capacity Vd is computed deterministically based on the design provisions of
SANS 10160-2. Equation 1 may be used as an unbiased prediction model for connection
capacity if nominal values are replaced with unbiased estimates. A model factor θ accounts
for the uncertainties associated to the prediction model, so that

Vactual = θ(µ,σ) ∗ Vpredicated (3)

The unbiased estimate Vpredicated may be a deterministic value based on measured pa-
rameter values, as was used for the model factor estimation in Section 3.3.1 or may be
probabilistic, as obtained through probabilistic descriptions of the material and geometric
parameters. In the latter case, Equation 2 becomes

G = θµ,σ ∗ 4.2
√
t3µ,σdf,(µ,σ)fu,(µ,σ)−Vd (4)

3.3 Probabilistic parameter description

3.3.1 Model factor

The model factor is defined as the ratio of actual connection capacity over the unbiased
predicted capacity.

θ =
Vactual
Vpredicted

(5)

The actual connection capacity is determined by testing, with the corresponding unbiased
prediction based on Equation 1, but calculated using measured parameter values instead
of nominal (biased) values.

To this end experimental work was necessary: Measurements were made of the plate
thicknesses and screw diameters and tensile tests were performed to obtain the tensile
strength used in the capacity predictions. In addition, connection capacity tests were
performed to obtain the actual connection capacities. The tests are discussed in more
detail in Section 4.

Testing of 132 screwed connections resulted in the same number of model factor estimates,
allowing the model factor to be expressed as a random variable best approximated by
a Normal distribution, and with an average and standard deviation of 1.05 and 0.055
respectively.

3.3.2 Tensile strength, thickness and screw diameter

The uncertainties associated with the material strength- and geometric parameters were
accounted for by modelling each with an appropriate probabilistic distribution model,
based on tensile tests and physical measurements which are discussed in Section 4.2.
As advised by expert literature ([5]; [2]) the geometric parameters (thickness and screw
diameter) were modelled with normal distributions and the tensile strength with a log-
normal distribution. The statistical moments for connections made of 550 MPa steel with
plate thickness 0.8 mm and a nominal screw diameter of 4.8 mm are provided in Table 1,
including the associated model factor values.
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Variable Average µ Standard deviation σ Coefficient of
variation (%)

Distribution

θ 1.050 0.055 5.2 Normal
t(mm) 0.765 0.007 0.92 Normal
df (mm) 4.790 0.049 1.0 Normal
fMPa 657.7 70.49 10.7 Log-normal

Table 1: Statistical properties of input parameters

3.4 Target reliability measure

In South Africa the target reliability index for connections is βt = 4, 5 (SABS 2011).Cor-
respondingly, the target resistance reliability is βt,R = 0, 8 ∗ 4, 5 = 3, 6 [5].

3.5 Reliability analysis

A reliability analysis was performed for the tilt-and bearing resistance of a typical connec-
tion made of 550 MPa steel with plate thickness 0.8 mm and a nominal screw diameter
of 4.8 mm designed according to SANS 10162-2. Equations 2 to 4 and the statistical
properties in Table 1 formed the basis of the FORM analysis.

The computed resistance reliability index βR must exceed the specified target value of
βt,R = 3.6 for the connection to be considered sufficiently reliable.
FORM sensitivity factors indicate the relative contribution of probabilistically described
parameters to the computed reliability. The analysis results are discussed in Section 5.

4 Experimental work and measurements

CFS sections with a sheet thickness of 0.8 mm and steel grade of 550 MPa is the most
frequently used in South Africa and thus primarily considered in the current experimen-
tal investigation. This investigation included the capacity testing of connections, tensile
strength tests and geometrical measurements, with the purpose of determining the model
factors. All tests were executed according to standardised procedures as set out in respec-
tive national standards. SANS 4998 details the tensile tests and Appendix F of SANS
10162-2 the connection capacity tests.

4.1 Connection capacity tests

The connection specimen consisted of two equally sized flat steel strips joined by lapping
the ends and fastened through the centre of the lapped area with a 4.8 mm diameter
self-tapping screw. The dimensions of the specimen are shown in Figure 1.

A uniform shear load that passed through the centroid of the connection was applied
using a Zwick/250 test machine with a hydraulic clamping system and end plates. This
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Figure 1: Connection test specimen

machine’s lower platform moves up or down relative to the upper platform, applying either
a tensile or compression force. The tensile (connection in shear) force was applied at a
strain rate of 0.03 mm per second and the connection capacity was taken as the highest
force reached prior to a 6mm displacement.

The failure mode observed for all 132 screwed specimens was a combination of screw-
tilting and hole-bearing with the former the dominant contributor. Figure 2 illustrates
the observed failure mode. As the shear force was applied, the steel strips underwent
some bearing, but as the force increased, the screw started to tilt and eventually started
to pull out. The pull out was caused by the force not being pure shear anymore, but
rather a combination of shear and tension. It is important to note that the ultimate force
was reached before any pulling out occurred.

Figure 2: Observed connection failure

4.2 Tensile tests and measurements

The tensile steel strength, nominal screw diameter and the plate thickness had to be
obtained for each specimen, in order to calculate an unbiased estimate of the connection
capacity on which to base the model factor calculation (Section 3.3.1). Both the screw
diameter and thickness were physically measured for each test specimen, before testing.
As it was impossible to measure the tensile strength of the exact connection specimen
that still had to be tested for its capacity, the tensile tests were performed on typical
dog-bone shaped tensile test specimen.
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Unfortunately, for practical reasons and due to supplier constraints, all specimens were
cut from only four different steel coils. Variability of strength and thickness within a single
coil was very low, with coefficients of variation typically less than 1.0%. The average of
three tensile test results per coil was found to adequately represent the coil strength.
Variability of tensile strength thus stem mainly from differences in steel strength from
coil to coil.

Average values from each of the coils, of the thickness and tensile strength respectively,
were used as four sample points to calculate representative averages and standard devia-
tions for the overall thickness and tensile strength random variables of 0.8 mm, 550 MPa
steel. The obtained values are reported in Table 1 and show acceptable agreement with
expected ranges of 1 to 4% and 7 to 10% respectively for the coefficients of variation from
literature [5].

5 Reliability results and discussion

A reliability analysis was performed for the tilt-and bearing resistance of a typical connec-
tion made of 550 MPa steel with plate thickness 0.8 mm and a nominal screw diameter
of 4.8 mm designed according to SANS 10162-2. Equations 2 to 4 and the statistical
properties in Table 1 formed the basis of the FORM analysis. Table 2 presents the results
of the analysis.

Reliability Index (β): 8.3 Failure probability: 4.2e−17

Variable Design value µ Sensitivity factor
Tensile strength 309 MPa -0.84
Model factor 0.81 -0.53

Screw diameter 4.77 mm -0.04
Base metal thickness 0.76 mm -0.11

Table 2: Reliability analysis results

The computed reliability index of β = 8.3 far exceed the target value of βt,R = 3.6, which
implies that the design formulation for this typical screw connection according to the
SANS 10162-2 is highly conservative.

During design, a capacity reduction factor of φ = 0.5 is applied to the nominal connection
capacity. The application of this factor was identified as the primary reason for the
significant conservatism. The influence of this factor is made clear in Figure 3 where the
tested capacities are plotted together with the nominal and design capacities. The range
denoted as (a) represents the conservative bias achieved through the use of nominal values
and other conservative limitations where (b) is an additional conservative bias achieved
by applying the capacity reduction factor.

The sensitivity factors show that, as far as the relative contributions to reliability by
probabilistically described variables go, the tensile strength and model factor dominate.
Theoretically plate thickness and screw diameter may be treated deterministically in
further investigations, without introducing significant error in the reliability estimates.
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Figure 3: Influence of capacity reduction factor

Thus far, only the analysis of the 0.8mm, 550MPa connection configuration was discussed.
However, connections with a wider range of steel thicknesses (0.58mm and 1.0 mm) and
strengths (230 MPa and 300 MPa) were considered in a similar way. Table 3 reports these
results.

Configuration Model Factor (θµ) Reliability Index (β)
0.58 mm, 550 MPa 1.01 9.15
1.0 mm, 300 MPa 1.2 8.4
0.8 mm, 230 MPa 1.25 8.84

Table 3: Reliability indices and average model factors of other configurations

The computed reliability indices confirm the highly conservative nature of SANS 10162-2
design provisions for typical screw connections in tilt-and-bearing.

The model factors obtained based on the ratios of experimental- over predicted capacities
showed some interesting trends. Model factors increased with increased plate thickness
and reduced with increased steel strength, as shown in Figure 4. Standard deviations of
the model factors were low, between 0.05 and 0.08 for the different configurations.

In the light of the model factor trend depicted in Figure 4a, one would expect lower
reliability estimates for 0.58mm, 550MPa configuration than what was obtained for the
0.8mm, 550MPa. Likewise, in the light of the model factor trend depicted in Figure 4b,
one would expect lower reliability estimates for 0.8mm, 550MPa configuration than what
was obtained for the 0.8mm, 230MPa. This however was not the case, largely due to
appropriate provisions in SANS 10162-2 to increase reliability for plate thicknesses and
strength where the model factor trends toward a value less than one. Clause 1.5.1.4
of SANS 10162-2 requires the following modifications in the calculation of the design
capacity when 550 MPa grade steel is used in plate thicknesses less than 0.6 mm or 0.9
mm respectively:

• For 550 MPa grade steel with a thickness less than 0.9 mm, the steel strength used
in the design calculations must be taken as the smallest of 495 MPa or 90% of the
specified strength value.
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Figure 4: Model factor trends

• For 550 MPa grade steel with a thickness less than 0.6 mm, the steel strength used
in the design calculations must be taken as the smallest of 410 MPa or 75% of the
specified strength value.

It is known that high strength plates have very little ductility, especially when the plates
are thin. This was confirmed by tensile test measurements for these configurations, where
the yield- and ultimate strength barely differed.

6 Conclusion

Reliability analysis of typical cold formed steel connections, expected to fail in tilt-and-
bearing, indicated high levels of conservatism in the design formulation of SANS 10160-2
and its parent standard AS/NZS 4600. A number of typical configurations with different
plate thicknesses and steel strength achieved reliability index values of β > 8. The
application of a capacity reduction factor of φ = 0.5 to the nominal capacity proved to
be the main contributor to conservatism. There may be scope to increase this factor to
obtain reliability closer to the target of βt = 3.6 if economic benefit can be derived from
such a calibration.

Unbiased predictions based on the standards’ prediction model compared well with ex-
perimentally determined capacities, with average model factors (ratio of actual over pre-
dicted capacity) between 1.01 and 1.25 and standard deviations between 0.05 and 0.08.
Model factors increased with increased plate thickness and decreased with increased steel
strength.

Very thin high strength plates have low ductility with little difference between the yield-
and ultimate strength. Limitations of the nominal steel strength in design capacity com-
putations for these ensure adequate conservatism, adjusting for the trend towards non-
conservative unbiased predictions.
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Abstract. TÜV SÜD implemented a simulation model to determine the possibly affected
area around a wind turbine subject to ice fall and a following procedure to quantify and
assess this risk.

The ice fall calculation uses average local wind conditions such as the sectoral distribution
of wind speed and direction at the desired location to perform Monte-Carlo-simulations
for defined scenarios which are only distinguished by the properties of the ice piece to fall
off.

Based on the results of this calculation it has to be decided whether or not a detailed risk
analysis has to be performed. This depends on the before mentioned affected area and
the local situation, e.g. special objects such as parking areas, streets or motorways, paths
or ways just for pedestrians within the hazardous area around the planned wind turbine.

Once the decision is made that a detailed risk assessment is necessary, for each planned
wind turbine and each object of interest a complex investigation is initiated. This consist
of the severity judgement on the one hand, based on the Probit function, and of the
frequency of being hit by a piece of ice on the other hand, which is based on the results
of the ice fall expertise and developed farther to assess the risk as accurate as possible.
Due to the complexity of the situation this method is still being continuously improved.

One of the central tasks performing the risk analysis is a proper classification of the objects
defined in the expertise with respect to the potential presence of people there, which is
the major influencing factor of the risk.

We will give a survey of the state of the art for risk analyses of ice throw and ice fall, a
description of the method how we use it today and an outlook of how we plan to improve
the method in the future.

1 Introduction

Wind energy is the leading source of renewable energy in Germany, supporting the am-
bitious targets for moving towards a nuclear free and carbon free generation profile. As
Germany is densely populated the building of new wind parks is subject to a quite com-
plex approval procedure. One important topic during this planning and approval stage is
the assessment of the risk of ice throw and ice fall near wind energy installations.

Wind turbines in Germany are not allowed to operate during ice formation on rotor blades,
the installation of a functional detection system for icing combined with the subsequent
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shut-down of the turbine has to be confirmed in the approval process. Residual risk of
ice fall from stopped turbines has to be investigated depending on the local situation,
especially when special objects are located nearby.

TÜV SÜD implemented a procedure for project developers planning on-shore wind parks
to meet the demands of the German authorities regarding the risk of ice throw and ice
fall.

At this point a distinction between the definition ice throw and ice fall has to be made. The
difference between these two is such that ice throw considers a spinning wind turbine, ice
fall indicates either a stopped wind turbine or a turbine in idling mode. For the approval
process in Germany ice fall is of interest, nevertheless the simulation can consider both
cases – ice throw and ice fall – by using the wind turbine specific rotational speed.

2 Ice fall Simulation

The ice fall simulations (Monte-Carlo-Simulations) are performed for four different sce-
narios:

• Scenario A: rime ice with a mass of 90 g

• Scenario B: rime ice with a mass of 240 g

• Scenario C: clear ice with a mass of 70 g

• Scenario D: clear ice with a mass of 180 g

To achieve a suitable convergence at the relevant objects of interest (e.g. streets or paths)
we use 5’000’000 iterations for each simulation as a fixed value for each project. It is
currently not clear if competitive analytical methods are able to solve this problem, but
in our ongoing process of improvement this will be checked.

These four scenarios were identified based on characteristic ice formation processes with
assumed proportions as well as on the consequence expected when pieces of ice accelerate
while falling from a height of 140 m to the ground (i.e. typical hub height of a wind
turbine). As shown in the following chapter, the masses chosen for the simulation define
the lower and the upper boundary of consequences:

• 90 g rime ice and 70 g clear ice: beginning of slight injuries

• 240 g rime ice and 180 g clear ice: fatality has to be assumed

The simulations are performed under consideration of:

• hub height

• rotor diameter

• rotor revolution

• ice properties

• wind properties.

For the wind properties a wind rose and a distribution of the wind speed (the Weibull dis-
tribution can be esteemed as a common standard which describes the behaviour of wind
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speed as accurate as possible) are produced using meteorological data of local weather
stations near the planned wind park or data of wind measurements, if available. For a
reliable conclusion of the simulation results the input wind distribution should be as rep-
resentative as possible for the turbine site. Depending on the representativeness between
the site of meteorological data and the planned wind park an uncertainty analysis on the
input data of wind properties is performed, which is leading to a slight increase in the
occurrence of higher wind speeds in the sectoral distribution and thus to conservative
results with respect to safety issues.

Figure 1: Example for a wind rose and Weibull distribution (distribution of wind speed
occurrences) as used for the ice fall simulations.

Based on these input data, the simulation of the x, y and z acceleration of the considered
ice pieces can be performed using the equation system of motion:

Mx́ =
−1

2
ρ CDA(x́− U)W (1)

Mý =
−1

2
ρ CDAýW (2)

Mź = −Mg − 1

2
ρ CDAźW (3)

with:

M = mass of ice piece
ρ = density of air
CD = drag coefficient
U = wind speed at hub height
A = cross-sectional area of ice piece
W = relative wind speed =

√
(x́− U)2 + ý2 + ź2

g = gravitational acceleration

For each scenario 5‘000‘000 iterations are performed, whereby each iteration means a hit
of an ice piece on a flat surface with the wind turbine in the centre. The surface is divided
into areas of 5 m times 5 m, and for each such area the number of the hits out of the 5 Mio
simulations is accumulated. The final result of the simulations is the area theoretically
affected by ice fall or ice throw.
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Within each iteration, the current wind regime, i.e. wind speed and wind direction, and
the radial and azimuthal position of the ice fragment on the rotor blade are randomly
chosen, with respect to the original distribution of wind speed and direction. The exact
simulation result respectively the outlier hits, which are caused by high wind speeds with
a low occurrence frequency, are not accurately reproducible. However these individual
hits are not significant in the critical risk assessment. The ice fall affected area appears
through the simulation of 5 Mio iterations and according to the Monte Carlo method as
a stable distribution.

In the calculation of the trajectory of the falling ice piece a rotation of the fragment is
included, which exposes different cross-sections along with different drag coefficient to
allow for a more realistic simulation.

A result of such a simulation is exemplarily shown for scenario C in the following Figure
2. The colouring shows for each cell the total amount of hits by an ice fragment within
the performed iterations. The site of the wind turbine is located in the centre of the grid
pattern. Range rings in the distances of the rotor radius of the turbine as well as of 100
m and 200 m are shown for better orientation. The results of the ice fall simulations

Figure 2: Example of the result of an ice fall simulation according to the input wind
regime. The wind turbine is located in the centre of the grid pattern. The
colouring shows the amount of hits per cell.
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are finally transferred to a topographical map, in order to investigate whether roads,
footways, paths or other objects of interest are affected by ice pieces (example see in
Figure 3). Based on the calculated frequency of hits respective of the objects of interest a
decision has to be made, if and for which objects a risk assessment has to be performed.
In the example of Figure 3 one broader road and three footways would have to be taken
into account for the risk assessment.

Figure 3: Projection of simulation results to a topographical map, example with two wind
turbines surrounded of several paths and roads.

3 Determining the extent of damage C

For determining the extent of damage, the so-called probit function is used. The probit
function is defined by

Pr = −17.56 + 5.3 · lnS (4)

with S = 1
2
mv2 as the kinetical energy of the ice pieces.

Using Table 1 the extent of damage can be estimated.

Example:
If the value of the probit function is 5.99, the calculated value of the extent of damage is
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% 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
0 - 2.67 2.95 3.12 3.25 3.36 3.45 3.52 3.59 3.66
10 3.72 3.77 3.82 3.90 3.92 3.96 4.01 4.05 4.08 4.12
20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45
30 4.48 4.50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72
40 4.75 4.77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97
50 5.00 5.03 5.05 5.08 5.10 5.13 5.15 5.18 5.20 5.23
60 5.25 5.28 5.31 5.33 5.36 5.39 5.41 5.44 5.47 5.50
70 5.52 5.55 5.58 5.61 5.64 5.67 5.71 5.74 5.77 5.81
80 5.84 5.88 5.92 5.95 5.99 6.04 6.08 6.13 6.18 6.23
90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33

- 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
99 7.33 7.37 7.41 7.46 7.51 7.58 7.65 7.75 7.88 8.09

Table 1: Relation between value of the probit function and quantitative extent of damage.

0.84 (84%), where the first digit is taken from the row and the second digit is taken from
the column. This quantitative approach considers the following relation:

• Quantitative value of 1: fatality

• Quantitative value of 0.1: severe injury

• Quantitative value of 0.01: slight injury

Based on this calculation the thresholds for the masses for the four scenarios A to D for
slight injuries and fatalities can be calculated.

4 Determining the frequency P

In an assessment of the WECO Project (Wind Energy Production in Cold Climate) the
icefall of a wind turbine WEA near the mountain Gütsch in Switzerland was observed.
Here the number of the fallen ice pieces has been counted [2].

During a stage of three years a total number of 200 ice pieces has been counted [2]. As it
has to be assumed that not all the ice pieces from the testing turbine have been found,
because they broke at the crash on the ground, it is further assumed that a number of
200 ice pieces per year is more realistic. Furthermore this number is set into relation to
the radius of the rotor blades. (z. B. 20 m radius in [2] and 200 ice pieces results in 600
ice pieces at a radius of 60 m).

So the results of the icefall simulation (relative frequency) can be transferred into an
absolute frequency of hits in a 5m × 5m square per year. Considering a relevant cross-
section area (0, 04m2 for the head of pedestrians an 2m2 for the windscreen of cars) and
assuming an average speed of 5 km/h for pedestrians and 60 km/h for cars the total
probability of being hit by an ice piece while crossing one of these 5m× 5m squares can
be calculated.
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Expositon
The resulting individual risk for each scenario for pedestrians is calculated by estimating
the exposition (time per year in the hazardous area) by categorization of the ways and
paths for pedestrians in reference to their expected usage. This categorization is one of
the main tasks within the risk assessment and is performed using available information
of the local authorities, on-site visits and aerial views (e. g. from Google Earth). Te
resulting Categorization is shown in Table 2. For cars on the roads the collective risk

Category Meaning
Regularly used way This way is – due to its size, its accessibility and its position

to villages and towns – assumed to be used regularly. This
means, it has to be assumed that this way is used by one
and the same jogger or pedestrian at each day we assume
ice fall conditions.

Sporadic used way For this kind of way not all of the attributes above are
applicable. So leads e. g. a higher distance to villages or a
worse accessibility to the assumption that this way is not
used at each day by joggers or pedestrians.

Seldom used way These are ways, which can be clearly identified as ways
from the aerial view, but which are definitely not used as a
main ways and which conditions allows the conclusion that
it is used seldom.

Usually not used way Ways which can be rarely identified as such from the aerial
view, which are a lot of kilometres away from the next
buildings or which are identified as blind alleys are seen as
usually not used.

Table 2: Categorization of ways and paths in reference to their expected usage

is calculated. Therefore the risk of one commuter (exposition at each of the 20 days of
assumed icefall condition [3]) is calculated and then multiplied with the total number of
cars assumed on this road per day. For cars a risk reduction factor of 0.1 is assumed to
consider the protective effect of the car itself.

5 Calculating the risk

Finally the risk for each scenario is calculated by adding the risks of the 5mx5m squares
which are touched by the way (actually a line in the main orientation using the minimum
distance is used, but the more precise method is planned). For the risk the following
equation is used:

Rscenario i = Cscenario i · Pscenario i (5)
Considering that each scenario will have more or less the same probability, the overall
risk can be calculated to

R = 0.25 ·
∑

i=A toD

CSzenario i · PSzenario i (6)
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6 Results

The calculated result is transferred into a diagram similar to the one shown in Figure 2 and
Figure 3. In this diagram the simulated number of hits in the 5m×5m squares is replaced
by the risk crossing one of these squares considering exposition, probability of being hit
and the calculated consequence. The colouring is set to the usually used colouring defined
by the international risk acceptance criteria (see [4]). For our risk assessment maps from
the open source project openstreetmaps are used. An example of such a result, including
ways and paths for pedestrians as well as a road is shown in the following

Figure 4: Example for a graphical representation of the result.

Usually a different cascade of measures is proposed by used, dependent of the calculated
risk:

Ways and paths for pedestrians

• Negligible risk: no specific measures, general warning signs.

• Acceptable risk: no specific measures, general warning signs

• Tolerable risk: specific warning signs near the wind turbine, if possible closing of
the way during winter.

• High risk: specific warning signs near the wind turbine, mandatory closing of the
way during winter.

• Unacceptable risk: Movement of the wind turbine to another site.
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Roads

• The collective risk has to be identified at least as tolerable risk. If not, the intended
position for the wind turbine is not possible (nevertheless we have made assessments
where roads are closed during winter and the wind turbine stays at the intended
position)

7 Conclusion

The procedure to calculate the ice fall risks shown in the chapters 3 2 to 54 was based on
the result of the Monte-Carlo-Simulation shown in chapter 21. Earlier approaches with
analytical methods have been far away from the reality as it was known from observations,
e. g. mentioned in [2].

The necessity of this kind of assessment was triggered by the needs of the industry to
find new sites for wind turbines, as more or less hazard free sites are not longer available
in Germany. So, triggered by requirements of the local authorities, ice fall simulation
and the subsequent risk assessment have become a permanent demand for the approval
process of wind turbines in Germany.

This method was developed from 2006 until today and it is still a process of steady
learning. But, as our company offers this service from its early beginnings and develops it
further with each new project, the method shown defines momentary the state-of-the-art
in science and technology.

In the future we will implement some smaller improvements, as for example a closer junc-
tion between Monte-Carlo-Simulation and risk assessment, as well as long-term planned
improvements like e. g. a backwards simulation of the results shown in figure 3 to achieve
more precise results to be less attackable by the authorities or opponents of wind energy.
Furthermore new findings regarding size of ice pieces or frequency of ice fall conditions
are considered in our model as soon as we gain knowledge therefrom.
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Abstract. The utilization of textile reinforced concrete is a promising approach to in-
crease the load capacities of reinforced concrete elements nowadays. To reach an adequate
safety level an appropriate numerical model should be found which regards several effects
on those capacities. Scattering effects, especially those of material properties, are respon-
sible for uncertainties which have to be considered by all means. Therefore in the present
contribution a mathematical construct named random fields to model fluctuating mate-
rial properties is introduced. They require a sufficient amount of samples which could be
compared with trials of the structures in laboratories. The generation of the samples is
realized within a Monte Carlo simulation. Furthermore a sensitivity analysis is performed
to determine the influence of the apparently dominating property of random fields called
correlation length.

1 Introduction

When the successive deterioration of buildings becomes critical, an effective method to
extend their lifespans using existing structures is sought. The adoption of textile rein-
forced concrete could be an adequate technique for those needs. But before it can be
safely applied, an appropriate safety level should be confirmed. A common way to reach
this aim is the execution of a reliable analysis. On the resistence-side various scatter-
ing and uncertain properties of materials and the geometry of the structure needs to be
considered. Therefore in this contribution major material properties, compressive and
tensile strengths, are modelled as scattering distributions along the length of a bending
beam which is loaded until it fails. These fluctuating properties are modelled with ran-
dom fields. The application of these requires a multiple numerical test execution due to
their random characteristics. This need is achieved by using the well-known Monte Carlo
method.

In a previous work ([17]) the authors applied various numerical methods ([16, 6, 15]) to
perform Monte Carlo simulations on the, later presented, numerical model. Thereby the
correlation length, which specifies the influences of randomly determined strength values
and their vicinity, was declared to be an important property of the random fields and an
assumed addional material property respectively.

Thus the dependence of the correlation length on the bending load capacity of RC beams
is investigated. The method of Sobol’ (see [14]) as a quantitative method of sensitivity
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analysis is used for this purpose. The results of the simulation appear to indicate the
influence of the evaluated input variables. In our case these are the correlation lengths of
the two uncorrelated random fields and the standard deviation of their input distributions,
realized with a Gaussian distributed random variable.

2 Flexural Strengthening of Reinforced Concrete
Beams by Textile Reinforced Concrete

Textile reinforced concrete (TRC) is a composite material. The function of tensile
strengthening is taken over by orthogonally oriented rovings within technical textiles.
In comparison to ordinary reinforced concrete, these textiles substitute the steel rein-
forcement. To ensure sufficient bond properties a fine-grained concrete must be used.
As part of the collaborative research centre (SFB) 528 the Technische Universität Dres-
den investigated the advantages of textile reinforcement for strengthenings of pre-loaded
concrete structures (see e.g. [9]). To understand the applied upcoming numerical model
a brief summary of the main content of [17] regarding strengthening of concrete beams
is given in the following. The explanations relate to the most common procedures and
combinations of materials and do not claim to be complete.

2.1 Composition and Characteristics of TRC

Usually the TRC is applicated at highly stressed structures by the lamination technique
(see [9]). An example of a retrofitted cross-section is shown at the right side in figure 1.
The several layers need only a thickness of 3 millimeters each. The mentioned researches
had proven, that carbon has the most promissing properties for those purposes. However
it must be noted, that a roving and the textiles embedded in the fine-grained concrete lead
to other values for the respective tensile strength. By reason of the complicated bond-
mechanisms the values cannot be converted into each other. Therefore special tensile
specimens and test setups were developed to determine the stress-strain-relations of the
final strengthening structures (see [8, 6]). Newer researches suggest a linear relation with
a limited tensile strain. A comparatively high corresponding average ultimate strength of
approximatelly 1900MN/m2 can be reached with the present composites. The potential
of those applications for strengthening for flexural bending was demonstrated in many
experiments (see e.g. [3]). An improvement of the bearing load capacity up to 300
percent is possible with only one strengthening layer made by carbon rovings.

3 Numerical Model for a Retrofitted RC Beam

3.1 Static System

The single-span beam, which is shown in figure 1, is based on a test setup according
to the general type approval for strengthenings with TRC [1]. The chosen system is
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Figure 1: Static System based on Test Setup of [1]

equipped with one strengthening layer for the sake of simplicity and the related proper-
ties of the reinforcements can be deduced from table 1. The accumulated cross-section
area of the TRC layers results from the clearance between the rovings in load-carrying
direction and needs to be multiplied by the width of the beam cross-section. To consider
softening behaviours the shown loading is applied path-controlled until the system fails.

Table 1: Geometric Properties of
Reinforcements

Unit Value

Steel Reinforcement
Rebar Diameter � mm 6.0
Number of Rebars 5
Cross Section Area As1 cm2 1.414

Textile Reinforcement
Roving Cross Section
Area At,1

mm2 1.833
Number of Rovings
per Meter

1
m 92

Accumulated Cross
Section Area At,a

mm2 84.318

Table 2: Relevant Material Characteristics
Unit Value

Concrete
Young’s Modulus Ec MN/m2 31000.0
Compressive Strength fc MN/m2 28.0
Strain at peak stress εc2 -0.0021
Nominal ultimate strain εcu2 -0.0035

Steel Reinforcement
Young’s Modulus Es MN/m2 200000.0
Yield Strength fy MN/m2 560.0
Tensile Strength ft,cal MN/m2 588.0
Ultimate Strain εsu 0.025

Textile Reinforcement
Young’s Modulus Et MN/m2 220000.0
Tensile Strength ftu MN/m2 1872.2
Ultimate Strain εtu 0.0085

3.2 Finite Element Model

ConFem, a software which has been developed at the Intitute of Concrete Structures, is
used to calculate the described system. The FEA-program provides an enhanced two-node
2D-beam element type based on the theory of Bernoulli. It also allows the integration
of steel as well as textile reinforcements. Furthermore the structure was divided into 120
elements of the same length. This configuration is detailed enough to generate precise
results with a reasonable computational cost for calculation.

3.3 Materials and Internal Force Equilibrium

For the ordinary concrete in the compression zone a parabolic-rectangular stress-strain
relation according to the standard [5] is applied. Furthermore to absorb tension the ma-
terial is not considered. Solely the reinforcements transfer the tensile forces. Thereby
a bilinear elastic-plastic constitutive relation considering hardening is applied for steel
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reinforcement (see [5]). As mentioned above a linear-elastic material law with an ultimate
strain εtu, respectivelly a limited tensile strength ftu is adopted for TRC. Further informa-
tion and notations about relevant deterministic material properties can be found in table
2. To find the internal force equilibrium of any cross-section an amplified model based
on [5] is applied. It regards different limit states where failure occurs in the simulation.
Thereby the ultimate compressive strain |εc| of concrete in the zone of pressure and the
tensile failure strain of steel εsu represent the well-known limit states, while the tensile
failure of TRC εtu has to be added. It also occurs in the tension zone of the cross-section.
The described model yields a non-linear system, which requires an incrementally-iterative
calculation to find the solution of the internal equilibrium.

4 Stochastically Distributed Material Properties

To model reality more accurate, we assume that the material properties or more precisely
the strengths fluctuate along the geometry of a structure, in our case along the length
of an RC beam. For a mathematical description, this can be achieved by using random
fields. It should also be possible to consider dependences of one point with its immediate
neighborhood. Due to the limited scope of this contribution there will be only brief
explainations for random variables and fields in the following. These are based on [7, 16]
and [17].

4.1 Random Variables

For our investistigation we are using continuous probability distributions to describe the
spatial scattering of the compressive strength of concrete and the tensile strength of
the textile reinforcement layer. A realisation y of the random variable Y is assumed as
a real-valued number. The cumulative distribution function (CDF) F (y) declares the
probability P that Y takes a value lower than y. The probability density function (PDF)
f(y) is obtained by differentiation of F (y) and its shape characterizes the distribution
(type). The mean value µy and the standard deviation σy define a normally distributed
random variable. The covariance σyz expresses the relationship between realisations of
different random variables Y and Z. For further explanations see e.g. [2].

4.2 Spatial Influence of Material Properties

As mentioned along the longitudinal axis of the investigated beam the compressive
strength of concrete and textile tensile strength are assumed as scattering values. For
one of those strength distributions assuming two different realisations y1, y2 of identi-
cal random variables at two positions x1, x2 the covariance σy1y2 can be adopted for the
spatial influences. The well-known bell-shaped autocorrelation function (see eq. (1)) is
commonly used to describe it. It depends on the distance |x1 − x2| and the standard
deviations of the random variables. Because of its decisive impact the correlation length
Lcorr,x deserves special consideration. The influence on the distributions of the realisa-
tions along the length of the beam is shown in figure 6 of [17]. Several samples of strength
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distributions with different correlation length can be obtained. Lcorr needs to be added
as a material parameter.

σY1,Y2(x1, x2) = σy1σy2e
−



|x1 − x2|
Lcorr,x




2

(1)

In the current standards [5] scattering material properties are integrated by means of char-
acteristic values. For the compressive strength of concrete they represent the 5 percent
quantile of a random variable which is assumed as a normal distribution. For concrete
of the strength class C20/25 the standard deviation σy can be derived by using the char-
acteristic strength fck = 20MN

m2 and the mean value µy = 28MN
m2 . A precise derivation of

these values is given in [17].

One part of the quoted general type approval is the specification of the scattering strength
properties of TRC. To determine the characteristics for ftu a probabilistic analysis as a
Monte Carlo simulation was performed. The mean value µy = 1872.2MN

m2 and standard
deviation σy = 148.52MN

m2 assuming a normal distribution were determined.

4.3 Random Fields within a Monte Carlo Simulation

Within a Monte Carlo simulation it is possible to generate deterministic samples with
randomly distributed input variables. Thereby each sample represents a retrofitted RC
beam with discretizised curves for the compressive strength of concrete and textile ten-
sile strength. Determining all strength values on the integration points over the sample
population two uncorrelated random fields (one for each strength distribution) can be
established. Assembling all spatial fluctuations a so-called autocorrelation matrix P is
introduced. It is quadratic and stores all autocovariance functions (eq. (1)) for all related
locations. Subsequently its dimension nrv xnrv is derived from the number of integration
points nrv. Using the Karhunen-Loéve expansion a decomposition of P into eigenvec-
tors Ψ and eigenvalues λ can be facilitated. By solving the standard eigenvalue problem
PΨ = λΨ ([7]) the calculation effort can be minimized without loss of crucial information.
Thus a realisation can be expressed by eq. (2).

S =
nrv∑

i=1

√
λiξψi (2)

where S expresses a sample for each random variable Y and ξ are standard Gaussian
random numbers. For more details about the procedure see [15, 16].

At the beginning of this section the generating of a Monte Carlo population was men-
tioned. So a series of realisations for each material property has to be compiled, i.e. in
our case 2 · nset. Where nset represents the population size. Each of them consists nrv re-
alisations of ξ, which are in turn determined by the well-known latin hypercube sampling
method.

After the calculation of nset RC beams with scattering material properties using ConFem it
is possible to display the frequency distribution of the bending load capacity for each failed
structure. Two of those diagrams can be found in [17]. Subsequently for the frequency
distribution a distribution type with its properties can be derived by e.g. kernel density
estimators (see [2]).
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5 Sensitivity Analysis and Method of Sobol’

As explained in [12] a determination which variation of sources effects the variation of
the output can be derived by a sensitivity analysis. Thereby quantitative and qualitative
methods are destinguished. This contribution focused on the quantitive and withal a
variance-based method namely the Method of Sobol’ (see [14]).

5.1 Correlation Ratio and Variance-Based Methods

Regardless of the model properties variance-based methods allows a quantitative assess-
ment of global sensitivity-indices ([13]). I.e. from a mathematical point of view a closed
system is not neccessary, which is important because of the used iterative FE-model for the
calculations. Eq. (3)([12]) shows the correlation ratio η2 and describes a variance-based
sensitivity indicator.

η2 =
V arX [E(Y |x)]

V ar[Y ]
(3)

where V arX [E(Y |x)] represents the variance of the conditional expectation (VCE) for Y
and V ar[Y ] is the output variance. The former one is gained by a variance decomposition
and measures the importance of the inputs x (see [12, chap. 8.2]). For the discrete case
the correlation ratio needs to be estimated. I.e. for each input factor xi the VCE is
estimated. For further information we recommend the lecture of [12, chap. 8].

5.2 Sensitivity and Total Effect Indices

First order sensitivity indices or - briefer expressed - sensitivity indices Si allow the iden-
tification of the additivity of a system and the estimation of priority of the input values.
Whereas the total effect indices ST i are more reliable for the investigation of the overall
effect of each single factor (see [12]).

To determine the indices several simulations are neccessary. Each value of the input
variables can be stored in a sample matrixX. Within it a column represents the generated
realisations for one input variable. Furthermore the number of lines expresses the sample
size n of the sensitivity analysis. For the evaluations of the first order and total effect
indices matrix X has to be combined by another matrix with the same size. The result
of this combinations are in the former case k (number of input variables) matrices X ′,
where the column of the input variables is the same like in X. For the total effect indices
in turn only the column of the investigated input variable differs.

This yields an overall computational effort of n(2k + 1) simulations. To determine the
effect of the specific input variable equation (3) needs to be solved 2k-times. Scrambled
Sobol’ LPτ sequences (see [11]) were used to generate samples for the different input
matrices.
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6 Results and Discussion

As mentioned in the introduction the dependence of four input variables on the output
variables is investigated. The latter ones are the mean value and the standard deviation of
the assumed normal distribution of frequency distributions of the Monte Carlo simulation.
1000 samples as the population size of each MC simulation were calculated. The sample
size of the sensitivity analysis was chosen with n = 40. This number was derived from the
recommendation in [13] with respect to the reference manual of SimLab1 for a minimum
of 10-times the amount of input variables. Consequently this yields 360000 simulations
which need to be performed by ConFem.

Table 3: Sobol’ sensitivity indices
Si µMu

σMu
STi µMu

σMu

Lcorr,fcu −0.282 0.77 182.50 1.76
Lcorr,ftu −0.946 0.88 11.07 0.44
σfcu −1.576 2.25 18.91 0.62
σftu −0.852 0.57 8.96 0.12

The results, especially the negative ones in the first column, indicates that the sample
size for the sensitivity analysis was not chosen in a sufficient range. By involving the
studies of e.g. [13] for the convergence behaviour of various methods, it can be assumed
that the results will stabilize with increasing the sample size. With respect to that fact
an interpretation of the non-negative results will not lead to new knowledge about the
influences and the dependences of the individual factors due to the complicated non-linear
model which was described and investigated.

7 Conclusion and Outlook

The novel strengthening technique of TRC has been investigating for 15 years at the
Technische Universität Dresden. To ensure the commonly-used high safety level a relative
high partial safety factor of approximately 2.0 must be applied. The first step to evaluate
which input variables have high impact on that factor which expresses several uncertainties
was presented in this contribution. A sensitivity analysis was executed using a non-linear
FE-model which was derived from a current general type approval [1]. Furthermore the
aim of involving spatial scattering properties was realized with the use of random fields.
Hence the impact of the assumed dominating input variable called correlation length
which describes the influence of random realisations of strength values by their vicinity
could not be determined.

However, the results suggest that the described model do not fit the applied method for the
sensitivity analysis. Also other approaches should be regarded to investigate the presented
numerical model with its characteristics due to its high complexity. Therefore the work
of Morris [10] and some methods based on this (e.g. [4]) should deserve attention in the
future. Another approach could be the simplification of the model. In this context the
investigations of Hartig ([6]) for uniaxial tensile behaviour of TRC could be considered.

1This reference was not available while writing this contribution.
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Abstract:    Reliability related problems can be evaluated from the point of view of probability 

dissipated  system.  The  principle  of  probability  preservation  is  firstly  investigated  by  state 

space  description  with  consideration  of  the  dissipated  probability,  where  a  coupled  partial 

differential  equation  that  governs  the  probability  density  evolution  process  of  a  probability 

dissipative system is derived. However, it is pity that the high-(say more than 4) dimensional 

partial  differential  equation  is  so  far  intractable  because  all  state  variables  are  coupled  for 

general  non-linear  system.  Instead,  the  principle  of  probability  preservation  is  revisited  by 

random  event  description,  where  the  dissipated  probability  relies  on  the  physical  dynamic 

response.  Therefore,  the  generalized  density  evolution  equation  for  probability  dissipated 

(GDEE-PD) system can be naturally formulated, which is possible to extract the probabilistic 

information  of  concerned  single  physical  quantity,  which  is  numerically  feasible,  after 

probability  dissipation.  Taking  an  integral  over  the  remaining  probability  density  functions 

after  probability  dissipation  will  give  the  remaining  probabilities.  Different  physical 

mechanisms  can  be  introduced  into  GDEE-PD  as  the  triggering  forces  of  probability 

dissipation,  which  leads  to  different  types  of  reliability  problems.  For  example,  if  strength 

failure criterion is considered to cause probability dissipation, the remaining probability after 

probability  dissipation  is  the  dynamic  reliability;  if  the  dynamic  instability  of  structures 

induces probability dissipation, the dissipated probability is the unstable probability and thus 

the  remaining  is  the  stable  reliability.  Numerical  example  is  carried  out  to  illustrate  the 

probability dissipated system based methodology for reliability analysis of structures.   

 

Keywords: reliability, the principle of probability preservation, probability-dissipative system,   

probability density evolution equation       

1. Introduction  

The  first-passage  reliability  assessment  of  structures  always  involves  with  a 

probability  dissipated  system.  The  recent  years  has  seen  great  development  in 

stochastic dynamics  from  the point of view of probability conservative  systems,  for 

example,  the  classical  Liouville  equation[1],  the  celebrated 

Fokker-Planck-Kolmogorov equation[2-4]  and  the Dostupuv-Pugachev equation[5]  can 

be derived by employing the state space description of the principle of preservation of 
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probability[6, 7].  However,  solutions,  even  the  numerical  ones  to  these  equations  are 

usually  unavailable  when  the  complex  system  is  taken  into  account.  Owing  to  the 

inherent  complexity  of  solving  these  equations,  a  governing  partial  differential 

equation  with  respect  to  the  evolutionary  probability  density  function  of  stochastic 

response,  which  is  applicable  to  general  stochastic  dynamic  system,  is  of  great 

necessity. The principle of probability preservation is revisited from the perspective of 

random event description, therefore a generalized density evolution equation (GDEE) 

is  derived  accordingly,  which  can  extract  the  probabilistic  information  of  any 

concerned  quantity[8].  Besides,  the  GDEE  is  a  one-dimensional  partial  differential 

equation,  which  is  practically  solvable  with  application  of  numerical  themes.  The 

method  based  on  the  GDEE  is  called  the  probability  density  evolution  method 

(PDEM),  which  indeed  degrades  the  difficulty  of  stochastic  dynamic  response 

analysis of complex nonlinear systems.   

        As  is  mentioned,  the  stochastic  dynamic  response  can  be  predicted  from  the 

probability preserved system, nevertheless,  the dynamic reliability problems are still 

an  open  challenge  with  consideration  of  the  limitation  of  the  probability  preserved 

system.  As  a  matter  of  fact,  the  probability  dissipated  system  should  be  paid  great 

attention  to  for  assessing  the  dynamic  reliability,  which  embodies  the  more  general 

sense  of  stochastic  dynamic  system  where  the  probability  preserved  system  can  be 

regarded as the special case of the probability dissipated system. Thus, the probability 

density  evolution  equation  for  the  probability  dissipated  system  must  be  well 

investigated.   

        The purpose  of  the  present  paper  is  to  derive  the  probability  density  evolution 

equation  for  probability  dissipated  system  and  show  the  applications  in  dynamic 

reliability problems.   

 

2. Probability Density Evolution Equation for Probability Dissipated 
System   

2.1  Derivation of the probability density evolution equation for probability 
dissipated system from the state space description 

        Consider  a  n-dimensional  dynamical  system  with  random  initial  conditions, 

namely   

     0 0, ,t t Y A Y Y Y     (1) 

where  1 2, ,...,
T

nY Y YY   is the  n -order state vector,   0 1,0 2,0 ,0, , ...,
T

nY Y YY is the 

initial condition vector,   ·A is the deterministic operator.   

        Let  us  consider  the  fixed  domain  fixedD   with  boundary  fixedD   in  the  state 

space, which  is  fixed  in a  time-variant velocity  field determined by ( , )v A y t . The 

probability  dissipation  is  assumed  to  happen  in  such  domain,  where  the  probability 

dissipated  domain  is  denoted  as  aD .  Therefore,  the  principle  of  preservation  of 

probability says that: in any arbitrary fixed domain in the state space, the increment of 

probability  during  a  time  interval  [ , ]t t t   is  equal  to  the  probability  transited 

through  the bound minus  the dissipated probability during  the same  time  interval[6]. 

Mathematically, the above statement can be expressed as   
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Figure 1 State space description  

  [ , ] [ , ]fixed fixedt t t D t t t DP P P          (2) 

where  [ , ] fixedt t t DP is  the  increment  of  probability  over  fixedD ,  [ , ] fixedt t t DP  is  the 

probability  transited  through  the  boundary  fixedD ,  P is  the  dissipated  probability 

during the same time interval 

     ( ) ,
a

t t

D t
P t p t dtd

  
    YY y yH     (3) 

where  H is the probability dissipation indicator, defined as   

   
0 ( )

( )
1 ( )

a

a

t D
t

t D


 



Y
Y

Y
H     (4) 

and   ,p tY y is the average PDF dissipated in the time interval   

   
 ,

,
p t

p t
t




Y
Y

y
y     (5) 

when  0t  , we have   

     
0

lim , ,
t

p t p t
 

Y Yy y     (6) 

      In Eq.  (2), the increment of probability can be rewritten as   

 

   

 

[ , ] , ,

,

fixed
fixed fixed

fixed

t t t D D D

t t

D t

P p t t d p t d

p t
dtd

t





    






 

 

Y Y

Y

y y y y

y
y

    (7) 

and the probability transited through the boundary is   

   [ , ] , ( )?
fixed

fixed

t t

t t dt D t D
P p t dt dS



  
    Y y v n     (8) 

where  n is the unit outward normal vector of the boundary  fixedD ,  dS is the unit 

area on the boundary. According to the divergence theorem[9], Eq.(8)  can be 

rearranged as   
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        Substituting    Eqs.  (7),  (9)  and  (3)  into Eq.  (2)  and noting the arbitrariness of 

 ,t t t  , we have   
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  (10) 

Further, if  a fixedD D and letting  0t  , Eq.  (10)  immediately leads to   

 
     

   
1

, ,,
( ) ,l

m
Y l l

l l

p y t A y tp t
t p t

t y

     
 

Y
Y

y
Y yH     (11) 

which  can  be  called  the  probability  density  evolution  equation  for  probability 

dissipated system (PDEE-PD) from the state space description. It should be noted that 

when  ( ) at DY always  holds,   ( ) 0t YH ,  meaning  a  probability  preserved 

system is interested, Eq.  (11)  reduces to be the classical Liouville equation.   

      Actually, the PDEE-PD can also be derived directly from the standpoint of Taylor 

expansion.  The  state  vector  at  the  time  instant  t t  ,  namely,     t t Y     can  be 

regarded as   

         ,t t t t t O t      Y Y A Y     (12) 

        Let 

         ,t t t t t O t      y y y A y     (13) 

        For a probability dissipated system, the following relationship exists   

         , , ( ) ,p t t d p t d t p t td   Y Y Yy y y y Y y y  H     (14) 

          Differentiating Eq.  (13)  yields   
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1
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l l
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d J d t d

y

 
    

 


y
y y y     (15) 

    where  J is the Jacobian.   

        Expanding   ,p t tY y   at   ,p tY y
 

gives 
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the first-order approximation of which reads   
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        Substituting Eqs.  (15)  and  (17)  into Eq.  (14), we have   
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        Expanding Eq.  (18)  goes to   
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  (19) 

        Omitting the high order term of  t   and letting  0t  , we have , 
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where the relationship in Eq. (6) is actually embedded when  0t  . Rearranging Eq. 

(20)  gives   
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Y yH     (21) 

It  should  be  noted  Eq.  (21)  is  a  multiple-dimensional  partial  differential  equation, 

which  is  impractically  solvable due  to  the  coupling of  all  the  state variables. When 

randomness is involved in, say, the excitation, the corresponding governing PDEE-PD 

can  also  be  derived  similarly.  Besides,  it  is  worth  pointing  out  that  probability 

dissipation  is  associated  closely  with  the  dynamical  system,  that  is,  the  probability 

dissipation must relate to a specific physical mechanism.   

 

2.2  Probability density evolution equation for probability dissipated system 
from the random event description 

        The stochastic dynamic system can also be represented as   

   , , tY A Y      (22) 

where   1 2, ,..., s   are  the  random  variables  involved  in  the  external 

excitation, the system parameters and the initial conditions.   

        A random event description of Eq.  (22), say the solution to Eq.  (22)  is unique, 

existent and continuously dependent on   , can be employed   

     , ; 1,2,...,l lY t H t l m Θ     (23) 

where  lY   is the lth component of  Y and the velocity is given by   

     , ; 1,2,...,l lY t h t l m Θ     (24) 
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        It  is  noted  that  all  the  randomness  involved  in   lY t comes  from  Θ ,  and  the 

joint PDF of the augmented system   ,lY t Θ can be represented as  , ,
lY lp y tΘ θ . The 

dissipated probability can be expressed as   

     ( ) , ,
l

t
l Y l lP Y t p y t dy d

 

  
  

Θ
Θ θ θH     (25) 

Likewise, the average joint PDF during the time interval   ,t t t    is   

   
 , ,

, , l

l

Y l

Y l

p y t
p y t

t




Θ

Θ

θ
θ   (26) 

and   

     
0

lim , , , ,
l lY l Y l

t
p y t p y t

 
Θ Θθ θ   (27) 

        Therefore, the dissipated probability can be rewritten as   

     ( ) , ,
l

t
l Y l lP Y t p y t tdy d

 

   
  

Θ
Θ θ θH     (28) 

        Likewise,  ( )lY t t  can be transformed from  ( )lY t  

         ,l l lY t t Y t H t t O t     Θ     (29) 

and the joint PDF of    ,lY t t  is denoted as  , ,
lY lp y t t Θ

  , where   

         + ,l l l ly y t t y t h t t O t            (30) 

   +t t       (31) 

Following a process analogous to Eq.  (16), we have   
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(32) 

where     is time invariant, thus,  0 θ . Eq.  (32) can further be represented to be   
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Θ Θ

Θ Θ

θ θ
θ θ  (33) 

where the high-order term of  t   is omitted.   

        For  a  probability  dissipated  system  during  the  time  interval   ,t t t ,  there 

exists   

             , , , , , ), ( , , ,
l l ll Y l lY l l Y l lp y t t d y p y t d y Y t p y t td y    ΘΘ Θ θ θθθ   H 

(34) 

where   
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       (35) 

s is the total number of random variables involved in   . It is proved that  1J  .   

        Substituting Eq.  (33)  into Eq.  (35)  and letting  0t  , we have   
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which  can  be  called  the  generalized  density  evolution  equation  for  probability 

dissipated system (GDEE-PD) from the random event description. It is noted that the 

GDEE-PD  is  a  one-dimensional  partial  differential  equation  relevant  with  the 

concerned  physical  quantity,  the  solution  to  which  is  easy  to  obtain.  In  addition, 

different physical mechanism can be introduced to trigger the probability dissipation, 

such as   
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Θ Θ
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θ θ
θ θH         (37) 

where  ( )Z t is  the  interested  physical  quantity  that  results  in  probability  dissipation. 

This  characteristic  provides  a  possibility  to  investigate  different  kinds  of  reliability 

/failure probability problems in engineering, in which each specific failure mechanism 

can  be  treated  as  the  driven  force  of  probability  dissipation  and  the  remaining 

probability is the reliability of need. 

        For instance, if one is interested in the probability of strength failure,  ( )Z t   can 

be  adopted  as  the  stress  at  the  key  section  or  the  displacement;  if  the  reliability  of 

stability  is  of  great  concern,   ( )Z t S t where   S t is  the  stability  function  that 

identifies  the  stability  state of  structures[10]  and    0S t  indicates dynamic  stability 

of  structures; moreover,  some complex  failure mode,  e.g.  the  stable  strength  failure 

with consideration of  instability can also be  introduced  to  trigger  the corresponding 

probability dissipation and investigate the failure probability, the GDEE-PD for which 

could be expressed as   
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where   

  
 
 

0 0
( )

1 0

S t
S t

S t


 


H   (39) 

herein,  only  if  ( ) 0S t    and  ( )lY t is  in  the  failure  domain  (probability  dissipation 

domain)      ( ) ( )1 1lS t Y t    H H   manifests the probability dissipation occurs 

when the strength criterion is violated on the premise that the structure keeps stable.   

        Under the initial condition   

     
0 0,, ,

l l t l ltYp y t y y p   ΘΘ θ θ                                 (40) 
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the  GDEE-PD  can  be  solved,  and  the  remaining  probability  after  the  probability 

dissipation is         

   , ,
lY l lR t p y t dy d



 
   Θ θ θ



                                (41) 

and the reliability is the remaining probability at the final time instant.     

3. Illustrating Example 

        A 17-storey controlled frame structure is adopted to illustrate the GDEE-PD for 

evaluating  the  reliability  or  the  failure  probability.  The  equation  of  motion  can  be 

expressed as   

          t t t t t   MY CY KY F s    (42) 

where  M , C   and  K are  the 17 17 mass,  damping  and  stiffness  matrices, 

respectively,  the  mass  and  the  stiffness  of  each  storey  are  denoted  as  m   and  k , 

which  are  normal  random  variables;   tY ,  tY and   tY are  the  17 1

displacement, velocity and acceleration vectors;   tF is the  17 1 external excitation 

vector;   ts denotes  the  17 1 control  force vector; Rayleigh damping  is adopted as 

1 2  C M K ;  the  visco-elastic  damper  described  by  the  fractional  model  are 

deployed between the 0-1, 1-2, 2-3, 5-6, 10-11, 12-13, 14-15, 15-16 storey, where the 

control force of each damper  if t   can be expressed as   

      i ve i ve if t k Y t c D Y t    (43) 

where  D  is  the  fractional  derivative  operator,  vek and  vec are  the  controller 

parameters, respectively.   

        The stochastic external excitation is assumed to be   

    1 _El NS
t x t F MI    (44) 

where   _El NS
x t denotes  the  El  centrol  acceleration(N-S  component),

1
 is  the 

amplitude of the ground motion, which is a random variable with normal distribution, 

 1,1,...,1
T

I is the  17 1   column vector.     

        The parameters of the system are listed in Table 1. 

Table 1    The parameters 

Parameter  m   k   1   2      vek   vec  
1
  

Mean  19300kg  897064kN/m  0.0093  0.1006  0.55  35000kN/m  63000kNs/m  3 

C.O.V.  0.2  0.2  0  0  0  0  0  0.2 

note: C.O.V stands for coefficient of variation for short.   

 

          The stochastic dynamic response analysis is firstly performed by PDEM, where 

the  probabilistic  response  of  the  top  displacement  is  shown  in  Figure  1. 

Correspondingly, the remaining probabilistic response after the probability dissipation, 

which  is  governed  by  the  GDEE-PD,  is  depicted  in  Figure  2  when  the  probability 

dissipated condition is adopted as   

  17 0.40Y t m   (45) 
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where   17Y t is the top displacement.   

 
(a) PDF surface  (b) PDF contour 

Figure 1 PDF evolution of probability preserved system 

 

 
(a) PDF surface  (b) PDF contour 

Figure 2 PDF evolution of probability dissipated system 

 

It is seen from the comparison that the probability dissipation has a strong influence 

on the evolutionary PDF, where the distribution range of the PDF after the probability 

dissipation  is  obviously  narrower  and  the  peak  value  is  lower  than  those  of  the 

probability preserved system, shown in Figure 3.   

       
(a) 20.82 s  (b) 25.16 s  (c) 28.2 s 

Figure 3 Typical PDFs at three time instants 

 

        Taking  an  integral  over  the  remaining  evolutionary  PDFs  after  the  probability 

dissipation  gives  the  remaining  probabilities  at  each  time  instant.  In  this  case,  the 

remaining  probability  at  the  end  is  the  dynamic  reliability  when  the  probability 

dissipated condition is adopted as the safety criterion, which is pictured in Figure 4.   
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Figure 4 Dynamic reliability assessment   

 

    By using the probability dissipated system, the reliability of dynamic stability of 

structures  can  also  be  assessed.  In  this  example,  the  time  delay  0.05s  is 

considered in the controller, which may have a deleterious effect on the stability of the 

controlled  structure.  A  newly  developed  energetic  criterion  for  identifying  dynamic 

instability  of  structures  is  employed  as  the  physical  mechanism  for  triggering  the 

probability  dissipation,  thus,  the  remaining  probability  is  the  reliability  of  dynamic 

stability. Figure 5 pictures two typical samples of the top displacement together with 

the corresponding stability function process. It is seen that dynamic instability of the 

controlled structure is inevitable due to the time delay inherent in the controllers.   

   
(a) stable motion  (b) Unstable motion 

Figure 5 Typical samples of the controlled structure with time delay 

 

        The  remaining  PDF  evolution  contour  of  the  top  displacement  after  the 
instability  induced probability dissipation  is  shown  in Figure 6(a). Clearly,  the  time 
delay in the controller even deteriorates the structural performance when the structure 
is  of  stability.  Consequently,  the  remaining  probability  is  the  reliability  of  dynamic 
stability,  as  is  shown  in  Figure  6(b).  Further,  the  strength  failure  mechanism  in  the 
stable domain can also be introduced to study the probability of strength failure with 
consideration of dynamic instability of structures. Similarly, the probability evolution 
contour of  the  top displacement after  the probability dissipation can be obtained via 
GDEE-PD,  which  is  depicted  in  Figure  7(a)  when   17 0.40Y t m is  taken  as  the 
strength criterion in the stable domain, and the failure probability of losing strength is 
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the dissipated probability pictured  in Figure 7(b). Compared  to Figure 4,  it  is noted 
that the failure probability increases when the structure is stable because of the time 
delay  effect  in  the  controller.  Therefore,  the  reliability  of  dynamic  stability  and  the 
failure  probability  provides  a  comprehensive  probabilistic  understanding  of  the 
controlled structure with time delay.   

 
(a) Remaining PDF contour    (b) Reliability of dynamic stability 

Figure 6    Probability dissipation of instability induced probability dissipation 

 
(a) Remaining PDF contour    (b) Failure probability 

Figure 7    Probability dissipation of strength failure in the stable domain induced 

probability dissipation 

 

4. Concluding Remarks 

        In  the  present  paper,  the  probability  density  evolution  equations  for  the 

probability  dissipated  system  are  derived  according  to  state  space  description  and 

random event description of the principle of preservation of probability, respectively. 

It  is  demonstrated  that  the  GDEE-PD  is  able  to  capture  the  instantaneous  PDF 

evolutionary process of any concerned physical quantity after probability dissipation, 

where  different  physical  mechanisms  of  structural  failure  can  be  introduced  as  the 

triggering forces of probability dissipation. The reliability or the failure probability is 

then  evaluated  straightforwardly  by  integrating  the  remaining  PDF  evolutionary 

process.  This  allows  us  to  ensure  the  structural  safety  in  a  probabilistic  way  with 

consideration  of  many  different  failure  modes  by  applying  the  probability  density 

evolution equation for probability dissipated system.   
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Abstract: The spatial correlation length of soil properties is an important parameter
to quantify the inherent spatial variability of soil. Since void ratio is a key parameter
of soil, the effect of loading on the spatial correlation length of void ratio based
on the Monte Carlo simulation was investigated. Firstly, 1D random fields of void
ratio with a specific correlation length were generated using the Markov correlation
function. Secondly, we simulated a loading process by using an advanced constitu-
tive model and analysed the changes in the pattern of the random fields by means
of geostatistical approaches. The results show a decrease of the spatial correlation
with increasing load. The results of this concept shows good results and contributes to
the explanation of spatial variability of soil properties due to loading and unloading cycles.

Keyword: correlation length; hypoplasticity; spatial soil variability; soil heterogeneity

1 Introduction

Soils are geological materials formed by weathering, erosion and sedimentation processes
and, save for residual soils, transported by physical means to their present locations.
They have been subjected to various stresses, pore fluids, and physical and chemical
changes. Thus, it is hardly surprising that the physical properties of soils vary from place
to place [11, 16]. These variations are known as uncertainty. The uncertainties and their
importance in natural soil have long been appreciated. Although it is truly difficult to
embrace uncertainty directly and easily due to its complexity in geotechnical issues, great
efforts have been undertaken in this area. Uncertainty in geotechnical engineering can be
categorized into epistemic and aleatoric uncertainty [10]. Epistemic uncertainty consists
of model uncertainty and measurement uncertainty while aleatoric uncertainty consists
of physical uncertainty, which is also known as inherent uncertainty; it is a natural ran-
domness of a quantity, which cannot be reduced by increasing site investigation [6]. The
spatial correlation of soil properties is referred in standard geotechnical and geostatistical
literature as correlation length, as explained in Huber [11].

While emphasizing the importance of soil variability and spatial soil variability [12], var-
ious researchers [11, 14] quantify the correlation length using in-situ experiments. It is
proven in various studies that the horizontal spatial correlation length can be separated
from the vertical spatial correlation length [11, 15], this is taken into account in different
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studies [9, 11]. Amongst others, Fenton & Griffiths [7] use the Random Finite Element
Method (RFEM) to quantify the effect of changing spatial correlation length in various
standard geotechnical problems. However, the effects of a loading process on the spatial
correlation of soil properties have not been investigated according to the knowledge of the
authors, which is in the focus of this contribution.

2 Methodology

We employ different techniques form geostatistics, mathematics and soil mechanics to
study the effects of a loading process on the spatial correlation of soil properties. Herein,
we use the Random Finite Element Method for the simulation of the effects of spatial
correlated soil properties; the non-linear soil behaviour is considered by an advanced
constitutive model.

2.1 Simulation of non-linear soil behaviour

We model the soil behaviour by an advanced constitutive model. The hypoplastic model is
a constitutive soil model developed for granular materials based on hypoplasticity theory
[3, 8].

It is an eight-parameter model with void ratio a state variable, given in equation (1).

◦
σ = fs[L(σ̂,D) + fdN(σ̂)‖D‖] (1)

Herein
◦
σ is the stress ratio, the scalar factors fs and fd take into account the influence

of mean pressure and density, D is the stretching ratio. The forth order tensor L is
linear with respect to D, the second order tensor N is non-linear with respect to D, and
σ̂ = σ/tr (σ).

2.2 Random Finite Element Method

The Random Finite Element Method (RFEM) is a robust method for the quantification
of the effects of spatially distributed properties in engineering. Fenton & Griffiths [7] have
applied this to various non-linear problems in geotechnical engineering.

For this reason, we use RFEM to study the effects of loading on the spatial correlation of
soil properties. We use random fields, which are generated by the well-known Cholesky
decomposition [4], for the representation of the void ratio, a key parameter in the descrip-
tion of soil behaviour. The spatial correlation of the void ratio is described by a spherical
correlation function. Theses random fields are used as input in a non-linear finite element
calculation.
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2.3 Evaluation of the change in the spatial dependence

After each step in loading we analyse the spatial dependence of the void ratio. Following
standard geostatistical textbooks [4], we use the correlation length to quantify this spatial
dependence. The correlation length is the distance within which the property values have
a relatively strong correlation. We use the experimental variogram given in equation 2 to
derive the correlation length.

γ(h) =
1

2 n (h)

∑
[z(x)− z(x+ h)]2 (2)

where n(h) is the count of pairs of points separated by the mutual distance h between
the property values z(x) at the location x.

We use the well-known weighted least squares methodology to calculate the correlation
lengths in order to compare the results of the experimental variograms. Apart from
this, we chose the weighted least squares fitting of different theoretical variograms to the
experimental variograms [5]. By using the theoretical variogram, we weight the values
of the variogram near the origin provide more important information [2] than the other
values and the precision of the variogram decreases with an increase of the distance. Three
commonly used theoretical variogram models are used for this issue. The spherical model,
exponential model and Gaussian model are given in equation 3, 4 and 5.

γz(h) =

{
c0[

3
2

h
a0
− 1

2
( h
a0
)3] for h ≤ a0

c0 for h > a0
(3)

γz(h) = c0

[
1− exp

(
− h

a0

)]
(4)

γz(h) = c0

[
1− exp

(
− h2

a02

)]
(5)

We use N, N/h2, N/(γ(h))2 as weights for the weighted least squares fitting of the the-
oretical variograms; herein, is N the number of point pairs, h the distance and γ(h) the
semivariogram.

We use the Akaike information criterion (AIC) [1] to verify the best weight and the most
appropriate theoretical variogram model. The AIC provides a means for model selection
through evaluating the relative quality of statistical models, for a given set of data. It is
defined by a finite sample set n:

AIC = n · ln(L) + 2 · k (6)

where k is the number of parameters used in the statistical model and L is the maxi-
mum value of the likelihood function for the estimated model. AIC measures the loss of
information caused by fitting an incorrect model to the data. Therefore given a set of
different models for the data, the best model has the minimum AIC value. The AIC can
be rewritten for a fitting by the weighted least square method.
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Figure 1: Discretisation of the one-dimensional FEM subsoil model.

AIC = n · ln(WRSS
n

+ 2k) (7)

The weighted residual sum of the squares (WRSS) is:

WRSS =
n∑

i=1

w2
i (γ̂ (hi)− γ (hi))

2 (8)

where γ̂ (hi) is the semivariance estimate of the theoretical semivariance γ (hi) at the ith
mutual distance.

3 Case study

3.1 Random Finite Element Method

We investigate the proposed methodology on a one dimensional model. The model is a
200 m deep weightless sand slice with a width of 1 m as is shown in figure 1. It is equally
divided into 200 square elements with a length of 1 m; every square will be assigned a
void ratio which is from a random field. Then a pressure will be put on the top of the
sand slice, and the Gudehus-Bauer hypoplastic model is used here to simulate the loading
process. We list the parameters of this model in table 1.

The random fiels represent the void ratio ed0 and have a mean value µ = 0.7 m, standard
deviation σ = 0.1 m and correlation length = 10 m are generated within a Matlab
environment using Cholesky decomposition. The correlation length follows an exponential
variogam model.
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Table 1: Input parameters of the hypoplastic model.

ϕc(
◦) hs(MPa) n α β ei0 ed0 ec0

22.6 659 0.214 0.45 2 1.20 0.30 0.82

Table 2: Mean AIC values from different theoretical variogram models and different
weights.

spherical exponential Gaussian
variogram variogram variogram

N -147.7 -155.6 -137.9
N/(γ(h))2 808.6 780.4 1043.8
N/(h)2 -556.9 -560.7 -480.0
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Figure 2: Comparison of the using different weights for WLS fitting of three theoretical
variograms.

3.2 Analysing the RFEM results

3000 original void ratio data sets are used here in order to get the mean value of AIC.
Table 2 is the result of the mean AIC from different weights of the weighted least square
method and different theoretical variogram models.

The spherical model with w = N/h2 is adopted because it fits the slope near the origin
best as is seen in Figure 2, compared with the other models and weights, and the AIC
value from spherical model (w = N/h2) does not differ too much compared with the least
value which is from exponential model (w = N/h2).

We use the software libary R with the Gstat [13] package to calculate the experimental
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Figure 3: Mean value and variance of the correlation length for different stress levels.

variogram and to fit the theoretical variogram.

The relation between the stress and both the mean range, and the variance of the range
can be seen from figure 3. It is clearly that the mean correlation length (mean range)
of soil void ratio decreases as the increase of the stress during loading with a log-normal
distribution given in figure 4. When a stress of σ = 25 MPa is putting on the top of
soil, the correlation length reduces quickly from θ = 10 m to approximately θ = 9 m,
then the reduction becomes smaller and smaller as the increase of stress; on the contrary,
the variance of the range increases with stress. The correlation length of void ratio has
a small variance (σ2

θ = 0.0834) for low stress(σ = 0 MPa) levels compare to higher stress
levels (σ = 0 MPa). As the stress increase, we find that the correlation length for the void
ratio decrease quickly from θ = 10 m at σ = 0 MPa to about σ2

θ = 3.5 m at σ = 400 MPa,
while some correlation lengths change only a little bit, what is more, some correlation
lengths even increase with stress in figure 4. At a load level of σ = 400 MPa, the resulting
correlation length range from θ = 3.48 m to 19.74 m with a variance of σ2

θ = 3.13 m,
which implies the correlation lengths after compression have a big fluctuation. From this
we can conclude that the variance of correlation length increases with stress.

4 Summary and conclusions

In this contribution we study the effects of loading on the spatial soil variability. We
demonstrate in a simplified case study that the correlation length of void ratio decreases
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Figure 4: Histogram of the correlation length of the void ratio at the stress levels σ = 400
MPa.

with the increase of stress during loading, while the variance of the correlation length
increases with increasing stress.

As far as the geotechnical properties of natural layers are concerned, we can derive from
this that the vertical correlation length of the void ratio decreases with the level of stress,
i. e. with the depth under the surface.

Of course, the stress level changes not only the void ratio, but also the other soil properties
like density, permeability, stiffness and strength. We believe that the correlation lengths
of these parameters should be changed by loading too, which needs to be investigated in
further studies.

Due to the rather small changes of the correlation length due to loading, the effects
in static geotechnical problems in the ultimate and serviceability state are expected to
be rather small. Therefore, the main focus of future research efforts will investigate
dynamical problems like e.g. a dynamically loaded footing. The power of the changing
spatial patterns of soil properties will have a significant contribution to describing soil
behaviour more accurate.
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